Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Cуществование майорановских локализованных состояний в простой модели перехода Джозефсона, с. 351-362Последние 15 лет в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие, как изменение кондактанса и эффект Джозефсона, что обусловлено вероятным применением МЛС при создании квантового компьютера. В статье изучены собственные функции одномерного оператора Боголюбова-де Жена с дельтаобразным потенциалом в нуле, описывающие локализованные состояния с энергией в лакуне спектра (сверхпроводящей щели). Найдены вероятности прохождения в задаче рассеяния для этого оператора, когда энергии близки к границе сверхпроводящей щели. Эти задачи исследовались как для единого на всей прямой сверхпроводящего порядка, определяемого вещественной константой $\Delta,$ так и для сверхпроводящего порядка, определяемого функцией $\Delta \theta (-x)+\Delta e^{i\varphi} \theta (x)$ для $\varphi=0,\pi$ (т.е. для нулевого сверхпроводящего тока и тока, близкого к критическому). Используемый гамильтониан можно рассматривать как простейшую модель перехода Джозефсона. Доказано, что в обоих случаях существуют два МЛС, но лишь при определенных значениях параметров, т.е. МЛС неустойчивы. При этом вероятность прохождения равна нулю в обоих случаях.
-
В настоящее время в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие как изменение кондактанса, что обусловлено весьма вероятным применением МЛС в квантовых вычислениях. Несмотря на актуальность, строгого математического исследования спектральных свойств и рассеяния для одночастичного оператора Боголюбова-де Жена $H,$ обычно используемого для исследования МЛС, почти не проводилось; методы, предложенные в статье, позволяют получить математически и физически интересные результаты. В работе математически строго изучен вопрос существования МЛС (т.е. существования нулевого собственного значения) для гамильтониана Боголюбова-де Жена в случае бесконечной одномерной $p$-волновой сверхпроводящей структуры при наличии потенциала; получены условия существования МЛС. Также изучена задача рассеяния для оператора Боголюбова-де Жена с потенциалом. При решении данных задач используется функция Грина оператора $H$, которая также найдена в статье.
-
Рассматривается гамильтониан Боголюбова – де Жена, возмущенный малым потенциалом, описывающий квазичастицы вида «электрон плюс дырка», в частности андреевские локализованные состояния (АЛС) в одномерной сверхпроводящей структуре при наличии примеси. Интерес к упомянутым квазичастицам резко возрос в последние 15-20 лет благодаря открытию в топологических сверхпроводниках майорановских локализованных состояний (МЛС). МЛС представляют собой устойчивые к внешним воздействиям нейтральные квазичастицы с нулевой энергией, весьма перспективные для будущего использования в квантовых вычислениях. Исследование возникновения и поведения, в зависимости от параметров системы и топологической фазы, АЛС, описываемых собственными функциями гамильтониана Боголюбова – де Жена, интересно как с математической точки зрения, в сравнении с обычным оператором Шрёдингера, так и с физической, поскольку может прояснить предпосылки возникновения МЛС в топологически нетривиальной фазе и майораноподобных состояний (часто играющих роль МЛС) в топологически тривиальной фазе. Изучение рассеяния интересно тем, что вероятность прохождения квазичастицы через потенциальный барьер пропорциональна кондактансу, который можно измерить в эксперименте, что в принципе дает возможность связать величину кондактанса с наличием АЛС. В статье найдены условия возникновения собственных значений (энергий квазичастиц) в сверхпроводящей щели, имеющейся в непрерывном спектре гамильтониана, а также их зависимость от параметров как в топологически нетривиальной, так и в топологически тривиальной фазах. Кроме того, исследована задача рассеяния для энергий вблизи границы щели; в частности, найдена вероятность прохождения квазичастицы через потенциальный барьер как функция от параметров системы.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.