Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'гельмгольцевы геометрии':
Найдено статей: 1
  1. Для современной геометрии важное значение имеет изучение геометрий максимальной подвижности. Максимальная подвижность для $n$-мерной геометрии, задаваемой функцией $f$ пары точек означает существование $n(n+1)/2$-мерной группы преобразований, оставляющей эту функцию инвариантной. Известно много геометрий максимальной подвижности (геометрия Евклида, симплектическая, Лобачевского и т.д.), но полной классификации таких геометрий нет. В данной статье методом вложения решается одна из таких классификационных задач. Суть этого метода состоит в следующем: по известной функции пары точек $g$ трехмерной геометрии находим все невырожденные функции $f$ пары точек четырехмерных геометрий, являющиеся инвариантами группы Ли преобразований размерности 10. В этой статье $g$ - это невырожденные функции пары точек двух гельмгольцевых трехмерных геометрий: $$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j,$$ $$\ln[(x_i-x_j)^2+(y_i-y_j)^2]+ 2\gamma\,\text{arctg}\dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j.$$ Данные геометрии локально максимально подвижны, то есть их группы движений шестимерны. Задача, решаемая в этой работе, сводится к решению аналитическими методами специальных функциональных уравнений, решения которых ищутся в виде рядов Тейлора. Для перебора различных вариантов применяется пакет математических программ Maple 15. В результате получаются только вырожденные функции пары точек.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref