Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'дискретная оптимизация':
Найдено статей: 4
  1. Бойков А.А., Селиверстов А.В.
    О кубе и проекциях подпространства, с. 402-415

    Рассмотрено взаимное расположение вершин единичного многомерного куба, аффинного подпространства и его ортогональных проекций на координатные подпространства. Даны верхние и нижние ограничения размерности подпространства, при которых некоторая ортогональная проекция всегда сохраняет отношение инцидентности подпространства и вершин куба. Также рассмотрены некоторые косоугольные проекции. Кроме того, дан краткий обзор истории развития многомерной начертательной геометрии. Аналитические и синтетические методы в геометрии обособились с XVII века. Хотя анализ и синтез тесно переплетаются, с этого времени многие геометры и инженеры делают тонкое различие. Указания на идею о многомерном пространстве можно найти в работах XVIII века, но настоящее развитие началось с середины XIX века. Вскоре такие работы появились и на русском языке. Далее многие математики обобщали свои теории на многомерный случай. Наши новые результаты получены аналитическими и синтетическими методами. Они иллюстрируют сложность задач псевдобулева программирования, поскольку снижение размерности задачи методом ортогонального проектирования встречает препятствие в худшем случае.

  2. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

  3. Рассматривается задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. Постановка ориентирована на инженерные задачи, возникающие в атомной энергетике и связанные со снижением облучаемости работников, а также в машиностроении (маршрутизация движения инструмента при листовой резке на машинах с ЧПУ). Предполагается, что исследуемая задача дискретной оптимизации имеет ощутимую размерность, что вынуждает к использованию эвристик. Обсуждается процедура локального улучшения качества последних посредством применения оптимизирующих мультивставок, определяемых всякий раз в виде конечного дизъюнктного набора вставок. Предполагается, что в каждой вставке используется процедура оптимизации на основе широко понимаемого динамического программирования. Показано, что в «аддитивной» маршрутной задаче вышеупомянутого типа (с ограничениями и усложненными функциями стоимости) улучшения достигаемого результата также агрегируются аддитивно. Предлагаемая конструкция допускает реализацию в виде параллельной процедуры с использованием МВС; при этом отдельные вставки выделяются вычислительным узлам и формируются независимо.

  4. В статье рассматривается общий случай маршрутной задачи дискретной оптимизации, осложненной условиями предшествования; изучается влияние условий предшествования на вычислительную сложность решений таких задач методом динамического программирования. Особенность применяемого метода динамического программирования заключается в его «экономичности»: подзадачи, не соблюдающие условия предшествования и, следовательно, не участвующие в оптимальном решении, не рассматриваются, что позволяет сберечь и вычислительную мощность, и память.

    Этот метод c 2004 года используется А.Г. Ченцовым и его соавторами, но степень экономии ресурсов исследовалось мало. Мы предлагаем подход к решению этой проблемы, основанный на комбинаторном анализе числа подзадач, существенных в смысле условий предшествования. Применяя известные комбинаторные правила сложения и произведения, мы получили результат для важных частных случаев условий предшествования: а) «независимые» наборы условий предшествования; б) «цепь» условий предшествования - когда условия задают линейный порядок; в) случай, когда в графе предшествования нет неориентированных циклов, и исходящая степень любой вершины не превышает единицы. Последний случай представляет собой условия предшествования, встречающихся в практической задаче маршрутизации движений инструмента в машинах листовой резки и соответствует требованию вырезать внутренний контур прежде внешнего.

    В связи с более сложной структурой случая в) по сравнению с остальными для него вместо аналитической формулы представлен алгоритм; алгоритм реализован на языке C++, зависимость его вычислительной сложности от числа связанных условиями предшествования объектов имеет не более чем квадратичный порядок. В дальнейшем мы предполагаем расширить область применения нашего подхода до более общих вариантов условий предшествования. Отметим также, что наш подход не зависит от критерия оптимальности, соответственно, может применяться для анализа сложности решения методом динамического программирования в произвольных маршрутных задачах с условиями предшествования.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref