Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'интегральное возмущение':
Найдено статей: 4
  1. Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.

  2. Рассматриваются две задачи нелинейного гарантированного оценивания фазовых состояний динамических систем. Предполагается, что неизвестные измеримые по $t$ возмущения линейно входят в уравнение движения и аддитивно — в уравнения измерения. Эти возмущения стеснены нелинейными интегральными функционалами, один из которых является аналогом функционала обобщенной работы. Исследуемая задача состоит в построении информационных множеств по данным измерения, содержащих истинное положение траектории. Используется подход динамического программирования. Если для первого функционала требуется решить нелинейное уравнение в частных производных первого порядка, что не всегда возможно, то для функционала обобщенной работы достаточно найти решение линейного уравнения Ляпунова первого порядка, что существенно упрощает задачу. Тем не менее, даже в этом случае приходится налагать дополнительные условия на параметры системы для того, чтобы траектория системы, соответствующая наблюдаемому сигналу, существовала. Если уравнение движения линейно по фазовой переменной, то многие предположения выполняются автоматически. Для этого случая обсуждается вопрос о взаимной оценке сверху и снизу информационных множеств по включению для разных функционалов. В заключение рассмотрен наиболее прозрачный линейно-квадратичный случай. Изложение иллюстрируется примерами.

  3. Краевые задачи теории функции комплексных переменных эффективно используются при исследовании равновесия однородных упругих сред. Наиболее сложные системы краевых задач соответствуют случаю, когда упругое тело обладает анизотропными свойствами. Анизотропия среды приводит к появлению в краевых условиях функции сдвига, которая в общем случае нарушает аналитичность искомых функций. В работе проводится исследование систем краевых задач со сдвигом для аналитических векторов, соответствующих трем основным задачам теории упругости (первая, вторая и смешанная задачи). Системы аналитических векторов со сдвигом сводятся к равносильным системам из краевых задач Гильберта для аналитических функций, содержащих интегральные члены со слабой особенностью. Полученное общее решение основных краевых задач анизотропной теории упругости позволяет проверить указанные задачи на устойчивость относительно возмущений краевых условий и формы контура. Такое исследование актуально в связи с необходимостью применения приближенных численных методов к решению краевых задач со сдвигом. Основным результатом работы следует считать доказательство устойчивости систем векторных краевых задач со сдвигом для аналитических функций на пространстве Гёльдера, соответствующих основным задачам теории упругости для анизотропных тел относительно изменения краевых условий и формы контура.

  4. Натия Н., Амуля Смырна Ч.
    Бесконечные сети Шрёдингера, с. 640-650

    Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref