Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'интегрируемость по Риману':
Найдено статей: 2
  1. Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.

  2. В работе вводится понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Показано, что всякая функция, заданная и непрерывная на замыкании $X$ открытого ограниченного множества $X_0\subseteq\mathbb R^n$, является правильной (принадлежит пространству $\langle{\rm G(}X),\|\cdot\|\rangle$). Доказана полнота пространства ${\rm G}(X)$ по $\sup$-норме $\|\cdot\|$. Оно является замыканием пространства ступенчатых функций. Во второй части работы определено и исследовано пространство ${\rm G}^J(X)$, отличающееся от пространства ${\rm G}(X)$ тем, что в его определении вместо разбиений используются $J$-разбиения, элементы которых — измеримые по Жордану открытые множества. Перечисленные выше свойства пространства ${\rm G}(X)$ переносятся на пространство ${\rm G}^J(X)$. В заключительной части работы определено понятие $J$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по Жордану замыкание открытого ограниченного множества $X_0\subseteq\mathbb R^n$, а функция $f\colon X\to\mathbb R$ интегрируема по Риману, то она $J$-интегрируема. При этом значения интегралов совпадают. Все функции $f\in{\rm G}^J(X)$ являются $J$-интегрируемыми.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref