Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'конечные отношения':
Найдено статей: 6
  1. Аль Джабри Х.Ш., Родионов В.И.
    Граф частичных порядков, с. 3-12

    Любое бинарное отношение σX (где X - произвольное множество) порождает на множестве X2 характеристическую функцию: если (x,y)∈σ, то σ(x,y)=1, а иначе σ(x,y)=0. В терминах характеристических функций на множестве всех бинарных отношений множества X вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если X - конечное множество, то эта алгебраическая система - граф («граф графов»).

    Показано, что если σ и τ - смежные отношения, то σ является частичным порядком тогда и только тогда, когда τ является частичным порядком. Исследованы некоторые особенности строения графа G(X) частичных порядков. В частности, если X состоит из n элементов, а T0(n) - это число помеченных T0-топологий, определенных на множестве X, то количество вершин в графе G(X) равно T0(n), а количество компонент связности равно T0(n-1).

    Для всякого отношения частичного порядка σ определяется понятие его опорного множества S(σ), являющегося некоторым подмножеством множества X. Если X - конечное множество, а частичные порядки σ и τ принадлежат одной и той же компоненте связности графа G(X), то равенство S(σ)=S(τ) имеет место тогда и только тогда, когда σ=τ. Показано, что в каждой компоненте связности графа G(X) совокупность опорных множеств ее элементов является специфическим частично упорядоченным множеством относительно естественного отношения включения множеств.

  2. Любое бинарное отношение $\sigma\subseteq X^2$ (где $X$ - произвольное множество) порождает на множестве $X^2$ характеристическую функцию: если $(x,y)\in\sigma,$ то $\sigma(x,y)=1,$ а иначе $\sigma(x,y)=0.$ В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф («граф графов»).
    Показано, что если $\sigma$ и $\tau$ - смежные отношения, то $\sigma$ является рефлексивно-транзитивным отношением тогда и только тогда, когда $\tau$ является рефлексивно-транзитивным отношением. Исследованы некоторые особенности строения графа $G(X)$ рефлексивно-транзитивных отношений. В частности, если $X$ состоит из $n$ элементов, а $T_0(n)$ - это число помеченных $T_0$-топологий, определенных на множестве $X,$ то количество компонент связности равно $\sum_{m=1}^n S(n,m) T_0(m-1),$ где $S(n,m)$ - числа Стирлинга 2-го рода. $($Хорошо известно, что количество вершин в графе $G(X)$ равно $\sum_{m=1}^nS(n,m) T_0(m).)$

  3. Аль Джабри Х.Ш., Родионов В.И.
    Граф ациклических орграфов, с. 441-452

    В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ — конечное множество, то эта алгебраическая система — граф («граф графов»). Доказано, что диаметр графа бинарных отношений равен 2. Показано, что если $\sigma$ и $\tau$ — смежные отношения, то $\sigma$ — ациклическое отношение (конечный ациклический орграф) тогда и только тогда, когда $\tau$ — ациклическое отношение. Получена явная формула для числа компонент связности графа ациклических отношений.

  4. В предыдущих работах авторов на множестве всех бинарных отношений множества $X$ введено понятие бинарного рефлексивного отношения смежности и определена алгебраическая система, состоящая из всех бинарных отношений множества $X$ и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф (граф бинарных отношений $G$). В настоящей работе для ациклических и транзитивных орграфов вводится понятие опорного множества: это совокупности $S(\sigma)$ и $S'(\sigma)$, состоящие из вершин орграфа $\sigma\in G$, имеющих нулевую полустепень захода и исхода соответственно. Доказано, что если $G_\sigma$ - связная компонента графа $G$, содержащая ациклический или транзитивный орграф $\sigma\in G$, то $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. Получена формула для числа транзитивных орграфов, имеющих фиксированное опорное множество. Аналогичная формула для числа ациклических орграфов, имеющих фиксированное опорное множество, получена авторами ранее.

  5. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

  6. Исследуются методы представления отношений предикатами Радемахера, предлагается метод коллективного голосования для распознавания отношений.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref