Текущий выпуск Выпуск 3, 2025 Том 35
Результыты поиска по 'конциркулярно-рекуррентное многообразие':
Найдено статей: 1
  1. В работе рассматриваются два конциркулярных инварианта приближенно келерова многообразия. Доказано, что приближенно келерово многообразие конциркулярно-плоско тогда и только тогда, когда первый конциркулярный инвариант равен нулю. Получена формула для вычисления второго конциркулярного инварианта и выделен подкласс приближенно келеровых многообразий, названный классом конциркулярно-паракелеровых многообразий. Конциркулярно-паракелерово многообразие нулевой скалярной кривизны изометрично комплексному евклидову пространству $\mathbb {C}^n$, снабженному стандартной эрмитовой метрикой. Класс конциркулярно-паракелеровых многообразий ненулевого постоянного типа совпадает с классом шестимерных собственных приближенно келеровых многообразий. Доказано, что конциркулярно-паракелерово приближенно келерово многообразие является римановым многообразием постоянной неотрицательной скалярной кривизны. При этом его скалярная кривизна равна нулю тогда и только тогда, когда оно является келеровым многообразием. Получена полная локальная характеризация конциркулярно-паракелеровых приближенно келеровых многообразий и конциркулярно-рекуррентных приближенно келеровых многообразий.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref