Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'локальное антимагическое хроматическое число':
Найдено статей: 2
  1. Разметка ребер связного графа $G = (V, E)$ называется локальной антимагической, если она является биекцией $f\colon E \to\{1,\ldots ,|E|\}$ такой, что для любой пары смежных вершин $x$ и $y$ выполнено $f^+(x)\not= f^+(y)$, где $f^+(x)= \sum f(e)$ — индуцированная метка вершины, а $e$ пробегает все ребра, инцидентные $x$. Локальное антимагическое хроматическое число графа $G$, обозначаемое $\chi_{la}(G)$, — это минимальное число различных индуцированных меток вершин среди всех локальных антимагических разметок $G$. В данной статье мы охарактеризуем $s$-мостовые графы с локальным антимагическим хроматическим числом 2.

  2. Пусть $G=(V,E)$ — граф порядка $p$ и размера $q$, не имеющий изолированных вершин. Биекция $f\colon E\rightarrow\left\{1,2,3,\ldots,q \right\}$ называется локально антимагической маркировкой, если для всех $uv\in E$ имеем $w(u)\neq w(v)$, вес $w(u)=\sum_{e\in E(u)}f(e)$, где $E(u)$ — множество ребер, инцидентных $u$. Граф $G$ является локально антимагическим, если $G$ имеет локально антимагическую маркировку. Локальное антимагическое хроматическое число $\chi_{la}(G)$ определяется как минимальное количество цветов, взятых по всем раскраскам $G$, индуцированным локальными антимагическими маркировками $G$. В данной работе мы полностью определяем локальное антимагическое хроматическое число для коронного произведения графа колеса и пустого графа.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref