Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматривается задача устойчивой реконструкции неизвестного входа системы по результатам неточных измерений ее решения. Суть задачи состоит в следующем. Имеется система, описываемая распределенным уравнением второго порядка, решение которой зависит от входа, меняющегося со временем. Как вход, так и решение заранее не известны. В дискретные моменты времени измеряется решение уравнения. Результаты измерения неточны. Требуется построить алгоритм приближенного восстановления входа, обладающий свойствами динамичности и устойчивости. Свойство динамичности означает, что текущие значения приближений входа вычисляются в реальном времени (он-лайн). Свойство устойчивости — что приближения являются достаточно точными, при хорошей точности измерений. Задача относится к классу обратных задач. Представленный в статье алгоритм основан на конструкциях теории устойчивого динамического обращения в комбинации с методами некорректных задач и позиционного управления.
-
Статья посвящена решению обратной граничной задачи для стержня, состоящего из композиционных материалов. В обратной задаче требуется, используя информацию о температуре теплового потока в разделе сред, определить температуру на одном из концов стержня. В работе представлен метод проекционной регуляризации, который позволил приближенно оценить погрешность полученного решения обратной задачи. Для проверки вычислительной эффективности этого метода были проведены тестовые расчеты.
-
Рассматривается регуляризация классических условий оптимальности (КУО) — принципа Лагранжа и принципа максимума Понтрягина — в выпуклой задаче оптимального управлении с функциональными ограничениями типа равенства и неравенства. Управляемая система задается линейным функционально-операторным уравнением второго рода общего вида в пространстве $L^m_2$, основной оператор правой части уравнения предполагается квазинильпотентным. Целевой функционал задачи является сильно выпуклым. Получение регуляризованных КУО в итерационной форме основано на использовании метода итеративной двойственной регуляризации. Основное предназначение получаемых в работе регуляризованных принципа Лагранжа и принципа максимума Понтрягина в итерационной форме — устойчивое генерирование минимизирующих приближенных решений в смысле Дж. Варги. Регуляризованные КУО в итерационной форме формулируются как теоремы существования в исходной задаче минимизирующих приближенных решений. Они «преодолевают» свойства некорректности КУО и являются регуляризирующими алгоритмами для решения оптимизационных задач. В качестве иллюстративного примера рассматривается задача оптимального управления, связанная с гиперболической системой дифференциальных уравнений первого порядка.
-
Обсуждается проблема корректного использования программных пакетов, в которых реализованы методы решения некорректных задач. К некорректным задачам относится большинство задач обработки экспериментальных данных. При использовании методов решения некорректных задач существует проблема неединственности решения, которая решается путем введения априорной информации. Получение априорной информации возможно разными способами, но количественные оценки предполагают использование дополнительных методов анализа данных. Очевидно, что дополнительные методы не должны быть сложнее и трудозатратнее основного метода обработки данных. На примере использования программы анализа данных электроразведки RES3DINV продемонстрирована роль априорной информации для получения достоверных результатов. Программный пакет RES3DINV применяется для построения модели грунта по измеренным значениям удельного сопротивления методами электроразведки. При использовании реализованного в программном пакете метода инверсии необходимо задавать входные параметры, характеризующие геометрические размеры объекта аномального сопротивления, которые априори, как правило, неизвестны. На модельных объектах продемонстрировано как влияет некорректное задание входных параметров на результат интерпретации данных. Показано, что в качестве способа получения априорной информации можно использовать метод векторного анализа. Этот метод позволяет получать оценки геометрических параметров аномального объекта и не требует больших временных и ресурсных затрат, и может быть использован непосредственно на месте полевых экспериментальных измерений.
-
Для линейной системы с запаздыванием рассматривается задача продолжения решения в сторону убывания времени.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.