Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Устойчивые уединенно-волновые решения обобщенного уравнения Буссинеска-Островского шестого порядка, с. 338-347Проведен обзор моделей, приводящих к неинтегрируемому уравнению Островского и его обобщениям, не имеющим точных уединенно-волновых решений. Приведен краткий вывод уравнения Островского для продольных волн в геометрически нелинейном стержне, лежащем на упругом основании. Показано, что в случае осесимметричного распространения пучка продольных волн в физически нелинейной цилиндрической оболочке, взаимодействующей с нелинейно-упругой средой, для компоненты перемещения возникает обобщенное уравнение Буссинеска-Островского шестого порядка. Построено точное кинкоподобное решение этого уравнения, установлена связь с обобщенным нелинейным уравнением Шрёдингера и найдено решение последнего уравнения в форме устойчивой солитоноподобной бегущей волны с монотонно затухающими или колебательными хвостами.
-
Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.
-
Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.
-
О вольтерровом обобщении метода монотонизации для нелинейных функционально-операторных уравнений, с. 84-99Пусть n,m, ℓ, s ∈ N – заданные числа, П ⊂ Rn – измеримое по Лебегу множество, X, Z – банаховы идеальные пространства измеримых на П функций. Рассматривается нелинейное операторное уравнение:
x = θ + AF[x], x ∈ Xℓ, (1)
где A : Zm → Xℓ – линейный ограниченный оператор, F : Xℓ → Zm – некоторый оператор. Уравнение (1) является естественной формой описания широкого класса сосредоточенных и распределенных систем. Ранее В.П. Политюковым был предложен метод монотонизации для обоснования разрешимости уравнения вида (1) и получения поточечных оценок решения. Суть его состояла в том, что разрешимость уравнения (1) доказывалась (помимо прочих условий) для случая, когда I) оператор F допускал поправку вида G = λI до монотонного оператора F[x] = F[θ+x]+G[x] такую, что II) (I +AG)−1A > 0 (λ > 0, I тождественный оператор). Как видно из примеров, приведенных в данной статье, условия I) и II) могут противоречить друг другу, что сужает сферу применения метода. Основной результат статьи в том, что в случае оператора A, обладающего свойством вольтерровости, естественным для эволюционных уравнений, требование монотонизируемости I) можно заменить требованием оценки оператора F на некотором конусном отрезке сверху и снизу через линейный оператор G плюс фиксированный элемент. Доказывается, что для глобальной разрешимости начально-краевой задачи, связанной с полулинейным эволюционным уравнением, достаточно, чтобы аналогичная начально-краевая задача, связанная с линейным уравнением, полученным путем оценки правой части исходного полулинейного уравнения на некотором конусном отрезке, имела положительное решение. В качестве иллюстрации рассматривается применение указанных результатов к системе Гурса–Дарбу, задаче Коши для волнового уравнения и первой краевой задаче для уравнения диффузии.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.