Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается регуляризация принципа Лагранжа (ПЛ) в выпуклой задаче условной оптимизации с операторным ограничением-равенством в гильбертовом пространстве и конечным числом функциональных ограничений-неравенств. Целевой функционал задачи не является, вообще говоря, сильно выпуклым, а на множество ее допустимых элементов, которое также принадлежит гильбертову пространству, не накладывается условие ограниченности. Получение регуляризованного ПЛ основано на методе двойственной регуляризации и предполагает использование двух параметров регуляризации и двух соответствующих условий согласования одновременно. Один из регуляризирующих параметров «отвечает» за регуляризацию двойственной задачи, другой же содержится в сильно выпуклом регуляризирующем добавке к целевому функционалу исходной задачи. Основное предназначение регуляризованного ПЛ — устойчивое генерирование обобщенных минимизирующих последовательностей, аппроксимирующих точное решение задачи по функции и по ограничениям, для целей ее непосредственного практического устойчивого решения.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.