Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'оптимальная гарантия':
Найдено статей: 4
  1. Для динамической системы, управляемой в условиях помех, рассматривается задача оптимизации гарантированного результата. Особенностью задачи является наличие функциональных ограничений на помехи, при которых свойство замкнутости множества допустимых помех относительно операции «склейки» двух его элементов, вообще говоря, отсутствует. Это обстоятельство препятствует непосредственному применению методов теории дифференциальных игр для исследования задачи и тем самым приводит к необходимости их походящей модификации. В работе предложено новое понятие неупреждающей стратегии управления (квазистратегии). Доказано, что соответствующий функционал оптимального гарантированного результата удовлетворяет принципу динамического программирования. Как следствие, установлены так называемые свойства $u$- и $v$-стабильности этого функционала, которые в дальнейшем позволят построить конструктивное решение задачи в позиционных стратегиях.

  2. Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.

  3. В статье изучается задача управления в условиях помех, которая формулируется как задача оптимизации гарантированного результата. В отличие от классической постановки таких задач предполагается, что множество допустимых помех конечно и состоит из кусочно-непрерывных функций. С учетом этого дополнительного функционального ограничения на помеху определяется подходящий класс неупреждающих стратегий (квазистратегий) управления и рассматривается соответствующая величина оптимального гарантированного результата. При некотором техническом предположении о свойстве различимости допустимых помех доказывается, что этот результат может быть достигнут путем использования стратегий управления с полной памятью. Как следствие, устанавливается неулучшаемость класса стратегий с полной памятью. Ключевым элементом доказательства является процедура распознавания действующих в системе помех, которая позволяет всякой неупреждающей стратегии поставить в соответствие близкую по гарантированному результату стратегию с полной памятью. В заключение статьи приводится иллюстрирующий пример.

  4. Рассматривается задача оптимизации гарантированного результата для управляемой системы, описываемой обыкновенным дифференциальным уравнением, и функционала качества, непрерывно зависящего от траектории движения системы. Значения управления и помехи ограничены в каждый момент компактными множествами. Предполагается, что помеха порождается некоторой неизвестной заранее функцией типа Каратеодори, то есть функцией непрерывной по пространственной переменной при каждом значении временной переменной и измеримой по временной переменной при каждом значении пространственной. Оптимальное управление ищется в классе стратегий управления с полной памятью о движении системы и о реализовавшемся управлении.

    Показано, что для достаточно широкого семейства управляемых систем оптимальный гарантированный результат в классе стратегий с полной памятью совпадает с оптимальным гарантированным результатом в классе квазистратегий. Для этого семейства управляемых систем построена разрешающая стратегия, допускающая численную реализацию. Приводится иллюстрирующий пример для нелинейной управляемой системы.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref