Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'осредненные уравнения':
Найдено статей: 5
  1. Исследуется эволюция угла наклона оси вращения планеты в поле притяжения звезды и внешних планет, входящих в планетную систему. Считаем, что исследуемая планета является динамически-симметричным твердым телом $(A = B)$. Полагаем также, что сама планета и внешние планеты движутся по кеплеровским эллипсам вокруг звезды со средними движениями $\omega$ и $\omega_2,\ldots ,\omega_N$, где $N$ - число небесных тел, воздействующих на планету. В переменных Депри-Андуайе получена функция Гамильтона задачи в рамках спутникова приближения. Проведено осреднение функции Гамильтона по быстрым переменным вращательного и орбитального движений при условии отсутствия резонансов между быстрыми частотами указанных движений. Показано, что осредненная функция Гамильтона содержит, помимо классических параметров, параметры $D_i$, являющиеся функционалами на семействе орбит исследуемой планеты и внешних планет. Показано, что осредненная функция Гамильтона допускает разделение переменных и, как следствие, существует три первых интеграла в инволюции. При рассмотрении гравитационных моментов от внешних планет как малых возмущений, получены, с помощью интеграла энергии осредненных уравнений, явные приближенные формулы для угла нутации исследуемой планеты. Получены также приближенные формулы для возмущенного периода прецессии планеты. Проведены расчеты размаха колебаний по углу нутации планеты, возмущенного периода ее прецессии для частного случая планетной системы, состоящей из звезды, самой планеты и массивной внешней планеты (подобной Юпитеру) с симметрично расположенными орбитами, плоскости которых пересекаются под углом $\gamma$.

  2. Липанов А.М., Карсканов С.А., Чернышев С.Л., Липатов И.И.
    Теоретическое исследование условий возникновения скоростного бафтинга, с. 382-395

    Численно исследуется явление возникновения скоростного бафтинга при обтекании профиля NACA0012 трансзвуковым потоком. Формулируется математическая модель, основанная на алгоритмах высокого порядка аппроксимации, позволяющая рассчитывать нестационарные отрывные течения. Модель базируется на интегрировании квазигидродинамических уравнений. Проводится параметрическое исследование обтекания профиля высокоскоростным потоком вязкого газа в зависимости от угла атаки. Анализируются как мгновенные, так и осредненные картины течения. Получены распределения пульсационных характеристик течений при различных углах атаки. Выявляются закономерности возникновения отрыва пограничного слоя, определено влияние скачков уплотнения на характер течения вблизи поверхности профиля. Определяется критический угол атаки, при котором начинает иметь место скоростной бафтинг.

  3. В работе представлены результаты расчетного исследования локальной структуры восходящего газожидкостного потока в вертикальной трубе. Математическая модель основана на использовании двухжидкостного эйлерова подхода с учетом обратного влияния пузырьков на осредненные характеристики и турбулентность несущей фазы. Турбулентная кинетическая энергия жидкости рассчитывается с применением двухпараметрической изотропной модели турбулентности $k - \varepsilon$, модифицированной для двухфазных сред. Для описания динамики распределения пузырьков по размерам используются уравнения сохранения количества частиц для отдельных групп пузырьков с различными диаметрами для каждой фракции с учетом процессов дробления и коалесценции. Численно исследовано влияние изменения степени дисперсности газовой фазы, объемного расходного газосодержания, скорости дисперсной фазы на локальную структуру и поверхностное трение в двухфазном потоке. Сравнение результатов моделирования с экспериментальными данными показало, что разработанный подход позволяет адекватно описывать турбулентные газожидкостные течения в широком диапазоне изменения газосодержания и начальных размеров пузырьков.

  4. Численно исследуются газодинамические процессы, протекающие в начальный момент работы сверхзвукового сопла с высокой степенью геометрического расширения. Основное внимание уделяется изучению механизмов потери течением осевой симметрии за счет неустойчивости образующихся в сверхзвуковой части сопла зон отрывного течения. Модель нестационарного течения вязкого теплопроводного сжимаемого газа по соплу основана на системе уравнений сохранения в форме Навье-Стокса. Турбулентность исследуемого течения моделируется методом отсоединенных вихрей DES и его модификацией DDES с привлечением полуэмпирической модели Спаларта-Аллмараса. Выполнено сравнение распределения давления на стенке сопла, проекции годографа вектора тяги, мгновенных и осредненных картин течения с экспериментальными данными и численными результатами других авторов. Показано, что применение вихреразрешающего моделирования DES и DDES позволяет адекватно описать основные особенности течения и воспроизвести феномен возникновения боковой составляющей тяги сверхзвукового сопла при приемлемом уровне вычислительных затрат.

  5. Рассматриваются два подхода к решению задачи математического моделирования обтекания метаемых тел: численное решение уравнений движения сплошной среды Навье-Стокса, осредненных по Рейнольдсу (RANS - Reynolds-averaged Navier–Stokes), с использованием модели турбулентности и прямое численное моделирование (DNS - Direct Numerical Simulation). Тестирование рассматриваемых подходов проводится при решении задачи обтекания тел вращения с простой геометрией: сферы и цилиндра с конической головной частью, для которых известны значения коэффициентов сопротивления при различных числах Маха. Проведено качественное и количественное сравнение результатов обтекания рассматриваемых тел сверхзвуковым потоком, полученным по методикам RANS и DNS. Апробация методики численного моделирования проводится для метаемого тела (снаряда) характерной формы. Представлены результаты численного моделирования обтекания снаряда для широкого диапазона параметров: чисел Маха и углов нутации. Выполнено сравнение расчетных значений коэффициентов сопротивления с эмпирическими эталонными зависимостями по законам 1943 и 1958 годов.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref