Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об эволюции угла наклона оси вращения планеты в планетной системе в нерезонансном случае, с. 549-564Исследуется эволюция угла наклона оси вращения планеты в поле притяжения звезды и внешних планет, входящих в планетную систему. Считаем, что исследуемая планета является динамически-симметричным твердым телом $(A = B)$. Полагаем также, что сама планета и внешние планеты движутся по кеплеровским эллипсам вокруг звезды со средними движениями $\omega$ и $\omega_2,\ldots ,\omega_N$, где $N$ - число небесных тел, воздействующих на планету. В переменных Депри-Андуайе получена функция Гамильтона задачи в рамках спутникова приближения. Проведено осреднение функции Гамильтона по быстрым переменным вращательного и орбитального движений при условии отсутствия резонансов между быстрыми частотами указанных движений. Показано, что осредненная функция Гамильтона содержит, помимо классических параметров, параметры $D_i$, являющиеся функционалами на семействе орбит исследуемой планеты и внешних планет. Показано, что осредненная функция Гамильтона допускает разделение переменных и, как следствие, существует три первых интеграла в инволюции. При рассмотрении гравитационных моментов от внешних планет как малых возмущений, получены, с помощью интеграла энергии осредненных уравнений, явные приближенные формулы для угла нутации исследуемой планеты. Получены также приближенные формулы для возмущенного периода прецессии планеты. Проведены расчеты размаха колебаний по углу нутации планеты, возмущенного периода ее прецессии для частного случая планетной системы, состоящей из звезды, самой планеты и массивной внешней планеты (подобной Юпитеру) с симметрично расположенными орбитами, плоскости которых пересекаются под углом $\gamma$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.