Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается трехмерная бидиффузионная конвекция в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа, взаимодействующая с полем горизонтальной завихренности. Методом многомасштабных разложений получено семейство амплитудных уравнений, описывающее вариации амплитуды конвективных ячеек, форма которых задаётся как суперпозиция конечного числа конвективных валиков с различными волновыми векторами.
Для численного моделирования полученных систем амплитудных уравнений были разработаны несколько численных схем, основанных на современных ETD (exponential time differencing) псевдоспектральных методах. Написаны пакеты программ для моделирования валиковой конвекции, а также конвекции с ячейками квадратного и гексагонального типов. Численное моделирование показало, что конвекция имеет вид вытянутых "облаков" или "нитей". Было замечено, что в системе достаточно быстро развивается состояние диффузионного хаоса, когда первоначальное симметричное состояние разрушается, и конвекция становится нерегулярной как по пространству, так и по времени. При этом в некоторых областях возникают пиковые всплески завихренности.
-
Псевдоспектральный метод для автономных нелинейных дифференциальных уравнений второго порядка, с. 61-72Автономные нелинейные дифференциальные уравнения представляют собой систему обыкновенных дифференциальных уравнений, которые часто применяются в различных областях механики, квантовой физики, химического машиностроения, физики и прикладной математики. Здесь рассматриваются автономные нелинейные дифференциальные уравнения второго порядка ${u}''({x}) - {u}'({x}) = {f}[{u}({x})]$ и ${u}''({x}) + {f}[{u}({x})]{u}'({x}) + {u}({x}) = 0$ на промежутке $[-1, 1]$ с заданными граничными значениями ${u}[-1]$ и ${u}[1]$. Для решения этих задач используется псевдоспектральный метод, основанный на матрице дифференцирования Чебышева с точками Чебышева-Гаусса-Лобатто. Для нахождения приближенных решений построены две новые итерационные процедуры. В этой статье был использован язык программирования Mathematica версии 10.4 для представления алгоритмов, численных результатов и рисунков. В качестве примера численного моделирования исследовано известное уравнение Ван дер Поля и получены хорошие результаты. Впоследствии возможно применение полученных результатов к другим нелинейным системам, таким как уравнения Рэлея, уравнения Льенара и уравнения Эмдена-Фаулера.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.