Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пусть $n,m,\ell,s\in\mathbb{N}$ - заданные числа, $\Pi\subset\mathbb{R}^n$ - измеримое ограниченное множество, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ - банаховы идеальные пространства измеримых на $\Pi $ функций, $\mathcal{D}\subset\mathcal{U}^{s}$ - выпуклое множество, $\mathcal{A}$ - некоторый класс линейных ограниченных операторов $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. Изучается управляемое функционально-операторное уравнение типа Гаммерштейна: $$ x(t)=\theta(t)+ A\Bigl[f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \qquad \qquad (1) $$ где набор параметров $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ - управляющий; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ - заданная функция, измеримая по $t\in\Pi$, непрерывная по $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ и удовлетворяющая некоторым естественным предположениям. Уравнение $(1)$ является удобной формой описания широкого класса управляемых распределенных систем. Для указанного уравнения доказывается теорема о достаточных условиях глобальной разрешимости для всех $u\in\mathcal{D}$, $A\in\mathcal{A}$ и $\theta$ из поточечно ограниченного множества. Для исходного уравнения определяются мажорантное и минорантное неравенства, получаемые из уравнения $(1)$ оценкой правой части соответственно сверху и снизу. Теорема доказывается при условии глобальной разрешимости мажорантного и минорантного неравенств. В качестве приложения полученных общих результатов доказывается теорема о тотальной (по всему множеству допустимых управлений) глобальной разрешимости смешанной задачи для системы гиперболических уравнений первого порядка с управляемыми старшими коэффициентами.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.