Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Индуцированные шумом переходы и деформации стохастических аттракторов в одномерных системах, с. 3-16Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.
-
В статье рассматривается задача устойчивой реконструкции неизвестного входа системы по результатам неточных измерений ее решения. Суть задачи состоит в следующем. Имеется система, описываемая распределенным уравнением второго порядка, решение которой зависит от входа, меняющегося со временем. Как вход, так и решение заранее не известны. В дискретные моменты времени измеряется решение уравнения. Результаты измерения неточны. Требуется построить алгоритм приближенного восстановления входа, обладающий свойствами динамичности и устойчивости. Свойство динамичности означает, что текущие значения приближений входа вычисляются в реальном времени (он-лайн). Свойство устойчивости — что приближения являются достаточно точными, при хорошей точности измерений. Задача относится к классу обратных задач. Представленный в статье алгоритм основан на конструкциях теории устойчивого динамического обращения в комбинации с методами некорректных задач и позиционного управления.
-
Численное исследование влияния направленной миграции неаборигенных видов на инвазивные сценарии, с. 551-562Рассмотрена математическая модель конкуренции в условиях биологической инвазии, записываемая в виде системы нелинейных уравнений параболического типа. Изучается конкуренция двух близкородственных видов — резидента и инвайдера. Динамика популяций на неоднородном ареале определяется локальным взаимодействием и диффузионным распространением. Для популяции инвайдера учитывается межвидовой таксис и направленная миграция, вызванная неоднородностью жизненных условий. В вычислительных экспериментах определены наборы миграционных параметров, отвечающих различным инвазивным сценариям. Дан анализ влияния начальных распределений на конкурентное исключение и сосуществование видов.
-
Говорят, что в математической модели нелинейной распределенной автоколебательной системы наблюдается феномен буферности, если подходящим выбором параметров этой системы можно обеспечить существование конечного заранее заданного числа различных устойчивых циклов. В статье исследованы некоторые математические модели естествознания, демонстрирующие феномен буферности.
-
В статье рассматривается дискретная макроэкономическая модель Калдора со случайными возмущениями. Показано, что в детерминированном варианте у модели существуют различные режимы динамики: равновесия, циклы, инвариантные кривые, хаос. Дается параметрическое описание интервалов структурной устойчивости возможных режимов и соответствующих бифуркаций. Под действием стохастических возмущений вокруг детерминированных аттракторов формируются стационарные вероятностные распределения случайных состояний. Для описания разброса случайных состояний вокруг равновесий и циклов используется техника функций стохастической чувствительности и метод доверительных эллипсов. Исследована зависимость стохастической чувствительности от параметров системы. В статье обсуждаются эффекты, связанные с индуцированными шумом переходами между сосуществующими аттракторами модели.
-
Пусть $n,m,\ell,s\in\mathbb{N}$ - заданные числа, $\Pi\subset\mathbb{R}^n$ - измеримое ограниченное множество, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ - банаховы идеальные пространства измеримых на $\Pi $ функций, $\mathcal{D}\subset\mathcal{U}^{s}$ - выпуклое множество, $\mathcal{A}$ - некоторый класс линейных ограниченных операторов $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. Изучается управляемое функционально-операторное уравнение типа Гаммерштейна: $$ x(t)=\theta(t)+ A\Bigl[f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \qquad \qquad (1) $$ где набор параметров $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ - управляющий; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ - заданная функция, измеримая по $t\in\Pi$, непрерывная по $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ и удовлетворяющая некоторым естественным предположениям. Уравнение $(1)$ является удобной формой описания широкого класса управляемых распределенных систем. Для указанного уравнения доказывается теорема о достаточных условиях глобальной разрешимости для всех $u\in\mathcal{D}$, $A\in\mathcal{A}$ и $\theta$ из поточечно ограниченного множества. Для исходного уравнения определяются мажорантное и минорантное неравенства, получаемые из уравнения $(1)$ оценкой правой части соответственно сверху и снизу. Теорема доказывается при условии глобальной разрешимости мажорантного и минорантного неравенств. В качестве приложения полученных общих результатов доказывается теорема о тотальной (по всему множеству допустимых управлений) глобальной разрешимости смешанной задачи для системы гиперболических уравнений первого порядка с управляемыми старшими коэффициентами.
-
О применимости техники параметризации управления к решению распределенных задач оптимизации, с. 102-117Изучаются аппроксимирующие конечномерные задачи математического программирования, возникающие в результате кусочно-постоянной дискретизации управления (в рамках техники параметризации управления) при оптимизации распределенных систем достаточно широкого класса. Устанавливается непрерывность по Липшицу градиентов функций аппроксимирующих задач; приводятся соответствующие формулы градиентов, использующие аналитическое решение исходной управляемой системы и сопряженной к ней системы и тем самым обеспечивающие возможность алгоритмического разделения проблемы оптимизации и проблемы решения управляемой начально-краевой задачи. Применение к численному решению задач оптимизации иллюстрируется на примере задачи Коши-Дарбу, управляемой по интегральному критерию. Приводятся результаты численного решения соответствующей аппроксимирующей задачи в системе MatLab с помощью программы fmincon, а также авторской программы, реализующей метод условного градиента. Кроме того, рассматривается задача безусловной минимизации, получаемая из аппроксимирующей задачи с ограничениями методом синус-параметризации. Приводятся результаты численного решения указанной задачи в системе MatLab с помощью программы fminunc, а также авторских программ, реализующих методы наискорейшего спуска и BFGS. Результаты численных экспериментов подробно анализируются.
-
В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.
Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.
Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.
-
В работе рассмотрена обобщенная модель образования новой фазы, объединяющая три основные стадии процесса роста при фазовом переходе первого рода. Получено численное решение кинетического уравнения Фоккера-Планка. Исследована зависимость решения от параметров системы, выявлены области применимости допущений, сделанных Зельдовичем, Лифшицем и Слезовым, и показано, что в зависимости от параметров системы можно получить как равновесное распределение, так и автомодельное распределение Лифшица-Слезова. При некоторых значениях параметров уравнение имеет осциллирующее решение.
-
Рассматриваются задача классификации текстурных изображений и проблема уменьшения пространства признаков. Предлагается редукция задачи многоальтернативной классификации до бинарной одномерной задачи, в которой допустимо использовать байесовский подход c одномерными оценками распределений. Вводится гипотеза о бета-распределении значений признаков для одного класса. Параметры распределения оцениваются методом моментов. Для оценки четырех параметров требуются аналитические выражения и статистические оценки первых четырех моментов этого распределения. После оценки параметров осуществляется проверка гипотезы о распределении по критерию Пирсона. Экспериментально установлено, что модель бета-распределения в большинстве случаев применима к оценке распределений значений признаков. Сделан вывод о необходимости такой проверки для каждой обучающей выборки. В работе также предлагается по результатам оценки степени пересечений оцененных распределений классов оценивать эффективность признака. Рассматривается взаимная корреляция выбранных признаков. Вводится способ оценки информативности признаков, основанный на минимуме средней вероятности ошибки для одного признака и взаимной некоррелированности для системы признаков. На основе алгоритма оценки информативности строится система признаков для каждой пары классов. Формулируется алгоритм классификации, который использует полученные системы признаков и принимает решение на основе оценки плотности моделью бета-распределения на этапе бинарной задачи. Кроме того, cформулированный алгоритм объединяет результаты частных бинарных решений и принимает окончательное решение в задаче классификации.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.