Текущий выпуск Выпуск 3, 2025 Том 35
Результыты поиска по 'собственные формы колебаний':
Найдено статей: 2
  1. Целью работы является получение математической модели движения составной упругой системы. Поиск собственных форм и частот предлагается проводить путем разложения колебаний по формам неподвижных элементов. Это позволяет преобразовать уравнения движения в частных производных в обыкновенные дифференциальные уравнения. Проведено моделирование движения космического аппарата, в состав которого входят упругие элементы большой протяженности (панели солнечных батарей).

  2. Представлены результаты численных исследований собственных колебаний усеченных прямых конических оболочек вращения, полностью заполненных идеальной сжимаемой жидкостью. Толщина оболочек непостоянна вдоль образующей и изменяется по различным законам. Поведение упругой конструкции и жидкой среды описывается в рамках классической теории оболочек, основанной на гипотезах Кирхгофа–Лява, и уравнений Эйлера. Уравнения движения оболочки совместно с соответствующими геометрическими и физическими соотношениями сводятся к системе обыкновенных дифференциальных уравнений относительно новых неизвестных. Акустическое волновое уравнение, записанное относительно гидродинамического давления, преобразуется к системе дифференциальных уравнений с помощью метода обобщенных дифференциальных квадратур. Решение сформулированной краевой задачи осуществляется методом ортогональной прогонки Годунова и сводится к вычислению собственных частот колебаний. Для этой цели используется сочетание пошаговой процедуры с последующим уточнением найденных значений в полученном диапазоне методом Мюллера. Достоверность получаемых результатов подтверждена сравнением с известными численными решениями. Для оболочек с различными углами конусности и комбинациями граничных условий (свободное опирание, жесткое и консольное закрепления) исследованы зависимости низших частот колебаний, полученных при степенном (линейном и квадратичном, имеющих симметричную и несимметричную формы) и гармоническом (с положительной и отрицательной кривизной) изменении толщины. Оценено влияние граничных условий на возможность существования конфигураций (угол конусности, закон изменения толщины, отношение максимальной и минимальной толщины профиля), обеспечивавших повышение фундаментальной частоты по сравнению с оболочками постоянной толщины при ограничениях на вес конструкции.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref