Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'стохастические дифференциальные уравнения':
Найдено статей: 5
  1. Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.

  2. В работе рассматривается задача оптимального управления одномерным процессом, заданным стохастическим дифференциальным уравнением, в котором управление воздействует как на коэффициент сноса, так и на коэффициент диффузии, при этом диффузионная составляющая линейна по управлению $$dx(t) = b(t,x(t),u(t))dt +\sigma(t,x(t))u(t)dW(t),\qquad x(0) = x_0.$$ Здесь $x(t)$ - фазовая координата, $u(t)$ - управляющая функция, $W(t)$ - винеровский процесс. Доказана теорема, которая предоставляет структуру решения рассматриваемого уравнения в виде суперпозиции функций $x(t)=Φ(t,u(t)W(t)+y(t))$, в котором $Φ(t,v)$ - известная функция, полностью определяющаяся коэффициентом $σ(t,x)$, и не зависит от управления, а $y(t)$ - решение потраекторно-детерминированного дифференциального уравнения с мерой вида

    $$dy(t) = B(t,y(t),u(t))dt - W(t)du(t).$$

    Выявленная структура решения позволяет вместо исходной стохастической задачи оптимального управления исследовать новую эквивалентную задачу с фазовой переменной $y(t)$, которая является потраекторно-детерминированной задачей оптимального импульсного управления. При детерминированном рассмотрении новой задачи решения последней могут оказаться упреждающими функциями, поэтому в работе предлагается метод, который позволяет добиться неупреждаемости оптимальных решений. Суть метода заключается в модификации функционала потерь в новой потраекторно-детерминированной задаче специальным образом подобранным интегральным слагаемым, которое позволяет гарантировать неупреждаемость решений.

  3. В статье рассматривается аппроксимация функции цены антагонистической дифференциальной игры с критерием, задаваемым условием минимизации некоторой величины вдоль реализовавшейся траектории, решениями стохастических игр с непрерывным временем и моментом остановки, управляемым одним из игроков. Отметим, что если в качестве вспомогательной игры выбрана стохастическая дифференциальная игра, то ее функция цены задается параболическим уравнением второй степени в частных производных с дополнительными ограничениями в форме неравенств, в то время как для случая вспомогательной игры с динамикой, задаваемой марковской цепью, функция цены определяется системой обыкновенных дифференциальных уравнений с дополнительными ограничениями. Развиваемый в статье метод аппроксимации основан на концепции стохастического поводыря, впервые предложенном в работах Н.Н. Красовского и А.Н. Котельниковой.

  4. В работе дан обзор проблем, приводящих к необходимости анализа моделей линейных и нелинейных динамических систем в форме стохастических дифференциальных уравнений со случайными запаздываниями различного типа, а также представлены некоторые известные методы решения этих задач. Далее в статье предлагаются новые подходы к приближенному анализу линейных и нелинейных стохастических динамических систем, изменения запаздываний которых описываются дискретной марковской цепью с непрерывным временем. Используемые подходы базируются на сочетании классического метода шагов, расширения пространства состояния стохастической системы и метода статистического моделирования (Монте-Карло). В рассматриваемом случае такой подход позволил упростить задачу и привести исходные уравнения к системам стохастических дифференциальных уравнений без запаздывания. Более того, для линейных систем получена замкнутая последовательность систем обыкновенных дифференциальных уравнений увеличивающейся размерности относительно функций условных математических ожиданий и ковариаций вектора состояния. Изложенная схема демонстрируется на примере стохастической системы второго порядка, изменения запаздывания которой описываются марковской цепью с пятью состояниями. Все расчеты и построение графиков проводились в среде математического пакета Mathematica с помощью программы, написанной на входном языке этого пакета.

  5. Рассматриваются модели сбора возобновляемого ресурса, заданные дифференциальными уравнениями с импульсными воздействиями, зависящими от случайных параметров. При отсутствии эксплуатации развитие популяции описывается дифференциальным уравнением $\dot x =g(x),$ которое имеет асимптотически устойчивое решение $\varphi(t)\equiv K,$ $K>0.$ Предполагаем, что длины интервалов $\theta_k=\tau_k-\tau_{k-1}$ между моментами импульсов $\tau_k$ являются случайными величинами и размеры импульсного воздействия зависят от случайных параметров $v_k,$ $k=1,2,\ldots.$ На процесс сбора можно влиять таким образом, чтобы остановить заготовку в том случае, когда ее доля окажется достаточно большой, чтобы сохранить некоторую часть ресурса для увеличения размера следующего сбора. Построено управление $\bar u=(u_1,\dots,u_k,\dots),$ ограничивающее долю добываемого ресурса в каждый момент времени $\tau_k$ таким образом, чтобы количество оставшегося ресурса, начиная с некоторого момента $\tau_{k_0},$ было не меньше заданного значения $x>0.$ Получены оценки средней временной выгоды от извлечения ресурса и приведены условия, при которых она имеет положительный предел (с вероятностью единица). Показано, что при недостаточном ограничении на извлечение ресурса значение средней временной выгоды может равняться нулю для всех или для почти всех значений случайных параметров. Таким образом, мы описываем способ добычи ресурса для режима сбора в долгосрочной перспективе, при котором постоянно сохраняется некоторая часть популяции, необходимая для ее дальнейшего восстановления, и с вероятностью единица существует предел средней временной выгоды.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref