Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О влиянии пористости на режим развития неустойчивости течения жидкости над слоем пористой среды, с. 134-144Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.
-
Рассматривается двухслойная система, состоящая из слоя пористой среды конечной толщины и слоя однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как недеформируемая. Исследуется влияние процесса вымывания растворенной примеси, содержащейся в жидкости, заполняющей слой пористой среды, на устойчивость стационарного плоскопараллельного течения однородной жидкости над ним. Пористая среда описывается моделью Бринкмана с условиями Ошоа-Тапия-Уитейкера на границе раздела потоков. Получено точное и приближенное решение для профиля концентрации примеси. В приближении «замороженного» распределения концентрации найден квазистационарный профиль скорости течения в системе. Проведено численное исследование линейной задачи устойчивости течения в широком диапазоне различных параметров задачи. При достижении достаточной скорости течения в системе развиваются колебательные возмущения, приводящие к развитию бегущих волн на границе раздела. Показано, что учет конвективного и диффузионного транспорта примеси практически не оказывает влияния на структуру нейтральных кривых и критические числа Рейнольдса.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.