Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'уклонение от встречи в конусе':
Найдено статей: 2
  1. Рассматривается линейная задача уклонения одного убегающего от группы преследователей, при условии, что игроки обладают равными динамическими возможностями, убегающий не покидает пределы выпуклого конуса. Доказывается, что если число преследователей меньше размерности пространства, то убегающий уклоняется от встречи на интервале [0, ∞).

  2. Рассматривается задача о конфликтном взаимодействии одного убегающего и группы преследователей. Все игроки обладают равными динамическими возможностями. Движение каждого из них описывается дифференциальным уравнением четвертого порядка. Убегающий обладает полной информацией, а преследователи знают только координаты всех игроков. Поимка понимается как совпадение ускорений, скоростей и координат игроков. Предполагается, что начальное положение, скорость и ускорение убегающего принадлежат заданному конусу. Кроме того, предполагается, что третья производная функции, задающей траекторию движения убегающего, в начальный момент времени также принадлежит этому конусу. Доказано, что если число преследователей меньше размерности пространства, то в игре можно избежать «мягкой поимки».

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref