Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'уравнения Рейнольдса':
Найдено статей: 6
  1. Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.

  2. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

  3. Рассматриваются два подхода к решению задачи математического моделирования обтекания метаемых тел: численное решение уравнений движения сплошной среды Навье-Стокса, осредненных по Рейнольдсу (RANS - Reynolds-averaged Navier–Stokes), с использованием модели турбулентности и прямое численное моделирование (DNS - Direct Numerical Simulation). Тестирование рассматриваемых подходов проводится при решении задачи обтекания тел вращения с простой геометрией: сферы и цилиндра с конической головной частью, для которых известны значения коэффициентов сопротивления при различных числах Маха. Проведено качественное и количественное сравнение результатов обтекания рассматриваемых тел сверхзвуковым потоком, полученным по методикам RANS и DNS. Апробация методики численного моделирования проводится для метаемого тела (снаряда) характерной формы. Представлены результаты численного моделирования обтекания снаряда для широкого диапазона параметров: чисел Маха и углов нутации. Выполнено сравнение расчетных значений коэффициентов сопротивления с эмпирическими эталонными зависимостями по законам 1943 и 1958 годов.

  4. В статье рассматривается модельная задача несжимаемого течения жидкости и переноса тепла в коротком плоском канале с обратным уступом. Цель работы состоит в исследовании влияния граничного условия для потока тепла (температуры) на выходе из канала на характеристики теплопереноса внутри канала. Система уравнений Навье-Стокса и баланса тепла решаются численно с использованием равномерной сетки разрешением $6001\times301$ узлов. Для разностной аппроксимации пространственных производных используется метод контрольного объема второго порядка. Достоверность получаемых решений подтверждена для широкого диапазона числа Рейнольдса $(100 \leqslant \text{Re} \leqslant 1000)$ и числа Прандтля $\text{Pr} = 0.71$ путем сравнения с экспериментальными и теоретическими результатами, найденными в литературе. Анализируются картины течения, поля изотерм перегрева потока и поведение локального числа Нуссельта вдоль нагретой нижней стенки канала в зависимости от выбора выходного граничного условия для потока тепла (температуры). Показано, что этот выбор может оказать существенное влияние на характер прогрева течения внутри всего канала. По результатам исследования выбор сделан в пользу нелинейного граничного условия.

  5. В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.

  6. Представлена методика моделирования турбулентного течения вязкого газа, основанная на схеме высокого порядка аппроксимации WENO (взвешенная существенно неосциллирующая схема). Данная схема характеризуется значительной устойчивостью при выполнении расчетов, так как WENO позволяет устранять нефизичные осцилляции численного решения, которые могут возникнуть в ходе вычислений. Приведена система определяющих уравнений, описывающая поток вязкого газа, основанная на системе уравнений Навье-Стокса. Разработаны и реализованы алгоритмы 3-го и 5-го порядков точности. Приведено описание численных методик использованных в расчетах потока газа. Моделирование турбулентности производилось с применением метода крупных вихрей. Предложенные алгоритмы были использованы для исследования течения вязкого газа в канале с обратным уступом. Число Рейнольдса потока газа в канале составляло Re=15000. Проведено сравнение результатов численного моделирования с экспериментальными данными.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref