Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'функция стохастической чувствительности':
Найдено статей: 5
  1. Башкирцева И.А., Насырова В.М., Ряшко Л.Б., Цветков И.Н.
    Индуцированная шумом перемежаемость и переход к хаосу в нейронной модели Рулькова, с. 453-462

    В статье исследуется дискретная модель нейрона, предложенная Рульковым. В детерминированном варианте эта система моделирует различные режимы нейронной активности, такие как покой, тонический и хаотический спайкинг. В присутствии случайных возмущений в системе может наблюдаться еще один важный режим - берстинг, характеризующийся перемежаемостью участков покоя и возбуждения. В работе исследуются вероятностные механизмы индуцированных шумом переходов от покоя к берстингу в зоне касательной бифуркации. Показано, что такие переходы могут сопровождаться трансформацией динамики системы из регулярной в хаотическую. Для анализа этих бифуркационных явлений используются техника функций стохастической чувствительности и метод доверительных интервалов.

  2. В работе изучается влияние шума на модель ферментативной реакции Голдбетера, описывающую механизм колебательного синтеза циклического аденозинмонофосфата в клетке. Показано, что модель отличается высокой чувствительностью к вариациям параметров и начальных условий. Демонстрируется и исследуется явление стохастической возбудимости в зоне устойчивого равновесия. Показано, что воздействие шума приводит к резкому переходу от малоамплитудных стохастических осцилляций к спайковым колебаниям большой амплитуды. Для параметрического анализа этого явления используются техника функций стохастической чувствительности и метод доверительных эллипсов. Изучена зависимость критического значения интенсивности шума, при котором начинается генерация большеамплитудных колебаний, от близости управляющего параметра к точке бифуркации. Для детального анализа частотных свойств стохастических колебаний проведен статистический анализ межспайковых интервалов и обнаружено явление когерентного резонанса.

  3. В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.

  4. В работе исследуется стохастическая динамика двумерной модели Хиндмарш-Розе. В детерминированной модели Хиндмарш-Розе возможны параметрические зоны сосуществования различных устойчивых аттракторов - равновесий и предельных циклов. Появление колебаний больших амплитуд при воздействии случайных возмущений на систему в этих зонах объясняется наличием предельного цикла. Однако стохастическая генерация осцилляций больших амплитуд возможна и в параметрической зоне, где имеется лишь одно устойчивое равновесие. В данной статье рассматривается этот случай. При малых шумах случайные состояния концентрируются вблизи устойчивого равновесия. При увеличении интенсивности шума траектории уходят далеко от равновесия, совершая колебательные движения больших амплитуд в окрестности неустойчивого равновесия. Это явление подтверждается изменением плотности распределения случайных траекторий. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности. Предлагается метод оценки критических значений интенсивности шума.

  5. В статье рассматривается дискретная макроэкономическая модель Калдора со случайными возмущениями. Показано, что в детерминированном варианте у модели существуют различные режимы динамики: равновесия, циклы, инвариантные кривые, хаос. Дается параметрическое описание интервалов структурной устойчивости возможных режимов и соответствующих бифуркаций. Под действием стохастических возмущений вокруг детерминированных аттракторов формируются стационарные вероятностные распределения случайных состояний. Для описания разброса случайных состояний вокруг равновесий и циклов используется техника функций стохастической чувствительности и метод доверительных эллипсов. Исследована зависимость стохастической чувствительности от параметров системы. В статье обсуждаются эффекты, связанные с индуцированными шумом переходами между сосуществующими аттракторами модели.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref