Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об одном подходе в исследовании движения гиростата с переменным гиростатическим моментом, с. 102-115Рассмотрена задача о движении гиростата, имеющего неподвижную точку, с переменным гиростатическим моментом под действием силы тяжести. Предложен новый метод интегрирования уравнений движения системы, состоящей из тела-носителя и трех роторов, которые вращаются вокруг главных осей. Его можно отнести к методу вариации постоянной в функции для гиростатического момента, который линейно зависит от вектора вертикали. При постоянном множителе гиростатический момент удовлетворяет уравнению Пуассона, а вариация его находится из интеграла площадей. Выполнена редукция исходных уравнений к системе пятого порядка. Получены новые решения данных уравнений в случае сферического распределения масс гиростата и для прецессионных движений тела-носителя. Установлен явный вид гиростатического момента для случая трех инвариантных соотношений.
-
В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.
Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.
Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.
-
Рассматриваются искусственные нейроны, чьи весовые коэффициенты будут изменяться по специальному закону, основанному на интегрированном в их модели обратном распространении. Для этого коэффициенты погрешности обратного распространения вводятся в явном виде во все модели нейронов и осуществляется передача их значений вдоль межнейронных связей. В дополнение к этому вводится специальный тип нейронов с эталонными входами, которые будут выступать в качестве основного источника первичной оценки погрешности для всей нейронной сети. В последнюю очередь вводится контрольный сигнал для запуска обучения, который будет управлять процессом передачи коэффициентов погрешности и корректировкой весов нейронов. Для рекуррентных нейронных сетей демонстрируется как провести интеграцию обратного распространения во времени в их формализм с помощью стековой памяти для внешних входов нейронов. Дополнительно к этому рассматриваются примеры как формализовать в рамках данного подхода такие популярные нейронные сети, как сети долгой кратковременной памяти, сети радиально-базисных функций, многослойные перцептроны и сверточные нейронные сети. Основным практическим следствием данного подхода является возможность описания нейронных сетей с перестраиваемыми связями на основе интегрированного алгоритма обратного распространения.
-
Универсальный комплекс программ для исследования механических систем с неголономными связями, с. 147-160В работе исследуются различные механические системы с неголономными связями. В частности, рассмотрены вопросы существования тензорных инвариантов (законов сохранения) и их связь с поведением системы. Особое внимание уделено возможности представления уравнений движения в конформно-гамильтоновой форме, которая в данной работе используется, главным образом, для интегрирования систем.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.