Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Laplace transform':
Найдено статей: 2
  1. В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.

    This work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.

  2. В пространстве $R^l$, $l\geq 2$, рассматриваются преобразования типа инволюции. Исследуются свойства матриц этих преобразований. Определена структура рассматриваемой матрицы и доказано, что матрица этих преобразований определяется элементами первой строки. Доказана также симметричность исследуемой матрицы. Кроме того, в явном виде найдены собственные векторы и собственные значения рассматриваемой матрицы. Найдена также обратная матрица и доказано, что обратная матрица имеет такую же структуру, как и основная матрица. В качестве приложений рассматриваемых преобразований введены и изучены свойства нелокального аналога оператора Лапласа. Для соответствующего нелокального уравнения Пуассона в единичном шаре исследованы вопросы разрешимости краевых задач Дирихле и Неймана. Доказана теорема об однозначной разрешимости задачи Дирихле, построены явный вид функции Грина и интегральное представление решения, а также найден порядок гладкости решения задачи в классе Гёльдера. Найдены также необходимые и достаточные условия разрешимости задачи Неймана, явный вид функции Грина и интегральное представление.

    Transformations of the involution type are considered in the space $R^l$, $l\geq 2$. The matrix properties of these transformations are investigated. The structure of the matrix under consideration is determined and it is proved that the matrix of these transformations is determined by the elements of the first row. Also, the symmetry of the matrix under study is proved. In addition, the eigenvectors and eigenvalues of the matrix under consideration are found explicitly. The inverse matrix is also found and it is proved that the inverse matrix has the same structure as the main matrix. The properties of the nonlocal analogue of the Laplace operator are introduced and studied as applications of the transformations under consideration. For the corresponding nonlocal Poisson equation in the unit ball, the solvability of the Dirichlet and Neumann boundary value problems is investigated. A theorem on the unique solvability of the Dirichlet problem is proved, an explicit form of the Green's function and an integral representation of the solution are constructed, and the order of smoothness of the solution of the problem in the Hölder class is found. Necessary and sufficient conditions for the solvability of the Neumann problem, an explicit form of the Green's function, and the integral representation are also found.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref