Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Riemann–Liouville fractional integral':
Найдено статей: 2
  1. В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.

    This work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional RiemannLiouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.

  2. Байрактаров Б.Р., Батт С.И., Шаокат Ш., Наполес Вальдес Х.Э.
    Новые неравенства типа Адамара для $(s,m_{1},m_{2})$-выпуклых функций, с. 597-612

    В статье вводится новое понятие выпуклости функции: $(s,m_{1},m_{2})$-выпуклые функции. Этот класс функций объединяет несколько типов выпуклости, встречающихся в литературе. Установлены некоторые свойства $(s,m_{1},m_{2})$-выпуклости и приведены простые примеры функций, принадлежащих этому классу. На основе доказанного тождества получены новые интегральные неравенства типа Адамара в терминах оператора дробного интегрирования. Показано, что эти результаты дают, в частности, обобщение ряда имеющихся в литературе результатов.

    Bayraktar B., Butt S.I., Shaokat S., Nápoles Valdés J.E.
    New Hadamard-type inequalities via $(s,m_{1},m_{2})$-convex functions, pp. 597-612

    The article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref