Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Taylor series':
Найдено статей: 2
  1. Полянский И.С., Радыгин В.М., Мисюрин С.Ю.
    Разложение регулярной кватернион-функции, с. 36-47

    В статье рассмотрены задачи, связанные с разложением регулярной кватернион-функции в обобщенные ряды Тейлора и Лорана. Обобщенный ряд Тейлора для регулярной кватернион-функции получен путем разложения ядра Коши в 4-мерном гипершаре в алгебре кватернионов и в системе гиперсферических координат. Обобщенный ряд Лорана для регулярной кватернион-функции получен путем разложения ядра Коши во внешности 4-мерного гипершара в алгебре кватернионов и в системе гиперсферических координат. На основе полученных решений при рассмотрении разложения регулярной кватернион-функции в бесконечно малом шаре, который ограничен 3-сферой, задано правило определения вычета регулярной кватернион-функции в алгебре кватернионов и в системе гиперсферических координат относительно изолированной особой точки. Также найдено разложение мероморфной кватернион-функции в степенной ряд.

    Polansky I.S., Radygin V.M., Misyurin S.Y.
    Decomposition of a regular quaternion function, pp. 36-47

    This article deals with the tasks associated with the decomposition of a regular quaternion function into generalized Taylor and Laurent series. The generalized Taylor series for a regular quaternion function were obtained by the decomposition of the Cauchy kernel in a 4-dimensional hyperball in the algebra of quaternions and the hyperspherical coordinate system. The generalized Laurent series for a regular quaternion function were obtained by the decomposition of the Cauchy kernel in the exterior of a 4-dimensional hyperball in the algebra of quaternions and the hyperspherical coordinate system. On the basis of the obtained solutions by considering the decomposition of a regular quaternion function in an infinitely small ball that is restricted by the 3-sphere, we set the rule to determine the deduction of a regular quaternion function in the algebra of quaternions and the hyperspherical coordinate system regarding the isolated singular point. In addition, the decomposition of a meromorphic quaternion function into the power series was found.

  2. Для современной геометрии важное значение имеет изучение геометрий максимальной подвижности. Максимальная подвижность для $n$-мерной геометрии, задаваемой функцией $f$ пары точек означает существование $n(n+1)/2$-мерной группы преобразований, оставляющей эту функцию инвариантной. Известно много геометрий максимальной подвижности (геометрия Евклида, симплектическая, Лобачевского и т.д.), но полной классификации таких геометрий нет. В данной статье методом вложения решается одна из таких классификационных задач. Суть этого метода состоит в следующем: по известной функции пары точек $g$ трехмерной геометрии находим все невырожденные функции $f$ пары точек четырехмерных геометрий, являющиеся инвариантами группы Ли преобразований размерности 10. В этой статье $g$ - это невырожденные функции пары точек двух гельмгольцевых трехмерных геометрий: $$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j,$$ $$\ln[(x_i-x_j)^2+(y_i-y_j)^2]+ 2\gamma\,\text{arctg}\dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j.$$ Данные геометрии локально максимально подвижны, то есть их группы движений шестимерны. Задача, решаемая в этой работе, сводится к решению аналитическими методами специальных функциональных уравнений, решения которых ищутся в виде рядов Тейлора. Для перебора различных вариантов применяется пакет математических программ Maple 15. В результате получаются только вырожденные функции пары точек.

    For modern geometry, the study of maximum mobility geometries is important. The maximum mobility for $n$-dimensional geometry given by the function $f$ of a pair of points means the existence of an $n(n+1)/2$-dimensional transformation group, which leaves this function invariant. Many geometries of maximum mobility are known (Euclidean, symplectic, Lobachevsky, etc.), but there is no complete classification of such geometries. In this article, the method of embedding solves one of these classification problems. The essence of this method is as follows: from the function of a pair of points $ g $ of three-dimensional geometry, we find all non-degenerate functions $f$ of a pair of points of four-dimensional geometries that are invariants of the Lie group of transformations of dimension 10. In this article, $g$ are non-degenerate functions of a pair of points of two Helmholtz three-dimensional geometries: $$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j} + 2z_i + 2z_j, $$ $$\ln [(x_i-x_j)^2 + (y_i-y_j)^2] + 2\gamma\,\text{arctg}\dfrac{y_i-y_j}{x_i-x_j} + 2z_i + 2z_j. $$ These geometries are locally maximally mobile, that is, their groups of motions are six-dimensional. The problem solved in this work is reduced to solving special functional equations by analytical methods, the solutions of which are sought in the form of Taylor series. For searching various options, the math software package Maple 15 is used. As a result, only degenerate functions of a pair of points are obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref