Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'a two-phase liquid':
Найдено статей: 4
  1. Проведено численное исследование процесса формирования сферического ударного импульса в газе и его взаимодействие с защитным барьером из водной пены, сопровождающееся образованием вихревых течений. Поставленная задача решена для случая двумерной осевой симметрии с использованием двухфазной газожидкостной модели, базирующейся на законах сохранения массы, импульса и энергии смеси и уравнении динамики объемного содержания фаз. Численное решение реализовано на базе открытого пакета OpenFOAM с применением стандартного решателя compressibleMultiphaseInterFoam, модифицированного в соответствии с условиями задачи и модельными представлениями. Дискретизация системы уравнений в выбранном солвере проведена методом контрольных объемов с применением вычислительного алгоритма Pimple. Показано значительное снижение интенсивности ударной волны при ее взаимодействии с преградой из водной пены и выявлены причины, приводящие к вихреобразованию в газовой области. Оценена достоверность полученных результатов сравнением с решением аналогичной задачи другими численными методами.

    The formation process of a spherical shock impulse in gas and its interaction with a protective aqueous foam barrier, accompanied by formation of vortex flows, are numerically investigated. The problem is solved in a two-dimensional axisymmetric formulation using a two-phase model of a gas-liquid mixture, which includes the laws of conservation of mass, momentum and energy of the mixture and an equation for the dynamics of volume content of phases.The numerical implementation is carried out on the basis of the OpenFOAM package using the standard compressibleMultiphaseInterFoam solver, modified in accordance with the conditions of the problem and model representations. The discretization of the system of equations in the chosen solver is carried out by the method of finite volumes using the computational Pimple algorithm. A significant decrease in the intensity of the shock wave in its interaction with the aqueous foam barrier is shown and the causes leading to vortex formation in the gas region are revealed. The reliability of the results obtained is estimated by comparison with solutions of a similar problem by other numerical methods.

  2. В работе представлены результаты расчетного исследования локальной структуры восходящего газожидкостного потока в вертикальной трубе. Математическая модель основана на использовании двухжидкостного эйлерова подхода с учетом обратного влияния пузырьков на осредненные характеристики и турбулентность несущей фазы. Турбулентная кинетическая энергия жидкости рассчитывается с применением двухпараметрической изотропной модели турбулентности $k - \varepsilon$, модифицированной для двухфазных сред. Для описания динамики распределения пузырьков по размерам используются уравнения сохранения количества частиц для отдельных групп пузырьков с различными диаметрами для каждой фракции с учетом процессов дробления и коалесценции. Численно исследовано влияние изменения степени дисперсности газовой фазы, объемного расходного газосодержания, скорости дисперсной фазы на локальную структуру и поверхностное трение в двухфазном потоке. Сравнение результатов моделирования с экспериментальными данными показало, что разработанный подход позволяет адекватно описывать турбулентные газожидкостные течения в широком диапазоне изменения газосодержания и начальных размеров пузырьков.

    The results of numerical simulation of the structure of a two-phase flow of a gas-liquid bubble mixture in a vertical ascending flow in a pipe are presented. The mathematical model is based on the use of the two-fluid Eulerian approach taking into account the inverse influence of bubbles on averaged characteristics and turbulence of the carrying phase. The turbulent kinetic energy of a liquid is calculated using equations for the transfer of Reynolds stresses. To describe the dynamics of bubble size distribution, the equations of particle number conservation for individual groups of bubbles with different constant diameters for each fraction are used taking into account the processes of breakup and coalescence. The influence of changes in the degree of dispersion of the gas phase, volume flow gas content and the velocity of the dispersed phase on the local structure and surface friction in the two-phase flow is numerically investigated. Comparison of simulation results with experimental data has shown that the developed approach allows an adequate description of turbulent gas-liquid flows in a wide range of changes in gas content and initial bubble sizes.

  3. Сформулирована и решена в общей постановке сопряженная задача об ударном локальном взаимодействии жидкости с нелинейной деформируемой, повреждаемой средой при наличии конечных деформаций. Воздействие жидкости рассмотрено в виде ударной волны или высокоскоростной струи, образующихся при разрушении кавитационных пузырьков вследствие осесимметричного или кумулятивного их обжатия на фронте распространяющейся ударной волны. Особое внимание при этом уделено влиянию смачиваемости деформируемой поверхности.

    The adjoint 3-D problem of shock local interaction of a liquid with the nonlinear deformable, damaged medium in the presence of the finite deformations is formulated and solved. Liquid influence is considered a kind of a shock wave or the high-speed jet, formed at collapse of bubbles of cavitation owing to axisymmetric or them cumulative compression at the front an extending shock wave. The special attention is thus given influence of wettability of a deformable surface.

  4. Лебедев В.Г., Сысоева А.А., Княжева И.С., Данилов Д.А., Галенко П.К.
    Компьютерное моделирование высокоскоростного затвердевания разбавленного расплава Si-As, с. 123-140

    В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.

    Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.

    Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.

    Lebedev V.G., Sysoeva A.A., Knyazheva I.S., Danilov D.A., Galenko P.K.
    Computer simulation of the rapid solidification for diluted melt Si-As, pp. 123-140

    We consider a locally nonequilibrium process of solidification for a supercooled binary melt. For sake of simplicity, it is assumed, that the solidifying binary system is at constant temperature and pressure. Also there are two phases corresponding to the solid and the liquid states. The mathematical description of the solidification process is based on the phase-field model that generalizes the approach of Plapp (M. Plapp, Phys. Rev. E 84, 031601 (2011)) to the case of locally nonequilibrium processes. We use the method of extended irreversible thermodynamics to derive thermodynamically consistent equations of the model, in contrast to the phenomenological approach of Plapp. A concentration as a dynamic variable (and not the chemical potential of the impurity) is another difference from Plapp's model. The equivalence of describing the process of solidification through the concentration field and through the chemical potential of the system is shown in the framework of the resulting model. In view of the smallness of the relaxation times, the present model is reduced to the singular-perturbed system of partial differential parabolic equations describing the dynamics of concentration and phase fields. In the paper, it is assumed that the description of the thermodynamic equilibrium states on the basis of the experimentally obtained Gibbs potentials is given.

    To verify the model, the numerical simulation of the one-dimensional problem of solidification of the melt was performed in the approximation of the diluted melt Si-As, which had been repeatedly investigated experimentally. In this paper, we propose a gradient-stable explicit method of integrating equations of the second order of accuracy in time in order to solve the system of singularly-perturbed equations numerically. We reduced an infinite space interval to a finite interval by the method of «periodic translation». The estimation of stability was performed using numerical experiments.

    The concentration profile, the phase-field profile and the distribution coefficient of the impurity at the front of solidification depending upon the value of supercooling were obtained from the numerical simulation of the solidification process for diluted melt Si-As. An analytical expression for the distribution coefficient as a function of supercooling that follows from the locally nonequilibrium model with a sharp interface was used to test the adequacy of the results of numerical experiments. The effect of the model parameters on the solidification process and behavior of the numerical solutions near the diffuse boundary were investigated.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref