Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
На примере известной задачи о прокладке трассы изучаются возможности численного решения сосредоточенных задач оптимального управления методом параметризации управления с помощью линейной комбинации $\mu$ функций Гаусса. Напомним, что функция Гаусса (называемая также квадратичной экспонентой) - это функция вида $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\exp\left[-\dfrac{(x-m)^2}{2\sigma^2}\right]$. Основу метода составляет сведение исходной бесконечномерной задачи оптимизации к конечномерной задаче минимизации целевого функционала по параметрам аппроксимации управления с последующим применением численных методов конечномерной оптимизации. Данная статья опирается на исследование, проведенное автором ранее и касавшееся возможностей аппроксимации функций одного переменного на конечном отрезке линейной комбинацией функций Гаусса, и является его непосредственным продолжением. Прежде всего, мы доказываем утверждение об аппроксимации на любом конечном отрезке материнского вейвлета «мексиканская шляпа» линейной комбинацией двух квадратичных экспонент. Отсюда получаем теоретическое обоснование возможности эффективной аппроксимации функций одного переменного на любом конечном отрезке линейными комбинациями функций Гаусса. После этого мы проводим сравнение качества аппроксимации указанного вида с аппроксимацией по Котельникову на базе численных экспериментов. Затем приводится постановка задачи о прокладке трассы, а также результаты ее численного решения при различных способах параметризации управления, наглядно демонстрирующие преимущества предлагаемого способа, в частности устойчивость численного решения к погрешности вычисления параметров аппроксимации оптимального управления даже при использовании малого количества этих параметров.
техника параметризации управления, сосредоточенная задача оптимального управления, аппроксимация квадратичными экспонентами, функция Гаусса
On the application of Gaussian functions for discretization of optimal control problems, pp. 558-575On the example of well known problem of a road construction we study the opportunities of numerical solution for lumped optimal control problems by the method of control parametrization with the help of a linear combination of $\mu$ Gaussian functions. Recall that a Gaussian function (named also as quadratic exponent) is one defined as follows $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\exp\left[-\dfrac{(x-m)^2}{2\sigma^2}\right]$. The method is based on reduction of an original infinite dimensional optimization problem to finite dimensional minimization problem of a cost functional with respect to control approximation parameters. This paper is guided by the former author's research concerned the opportunities of approximation of one variable functions on a finite segment by a linear combination of $\mu$ Gaussian functions, and is to be regarded as its direct continuation. First of all, we prove an assertion concerning approximation on any finite segment for mother wavelet Mexican hat by a linear combination of two Gaussian functions. Hence, we obtain theoretical justification of the opportunity of an effective approximation for one variable functions on any finite segment with the help of linear combinations of Gaussian functions. After that, we give a comparison by quality of the approximation under study with the approximation in the style of Kotelnikov by means of numerical experiments. Then we give the road construction problem formulation and also the results of numerical solution for this problem which demonstrate obviously the advantages of our approach, in particular, a stability of numerical solution with respect to evaluation error of the approximation parameters for an optimal control, even with usage of small count of such parameters.
-
Изучаются возможности аппроксимации произвольной кусочно-непрерывной функции на конечном отрезке линейной комбинацией $\mu$ функций Гаусса с целью дальнейшего их использования для аппроксимации управлений в сосредоточенных задачах оптимального управления. Напомним, что функция Гаусса (квадратичная экспонента) - это функция вида $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}} \exp\left[ -\dfrac{(x-m)^2}{2\sigma^2} \right]$. В отличие от исследований, проводившихся ранее другими авторами, рассматривается случай, когда параметры функций Гаусса (так же как и коэффициенты линейной комбинации) являются варьируемыми и подбираются, в частности, путем минимизации отклонения аппроксимации от аппроксимируемой функции либо (в том случае, когда речь идет об аппроксимации задачи оптимального управления) путем минимизации целевого функционала. Этот подход позволяет аппроксимировать задачи оптимального управления сосредоточенными системами конечномерными задачами математического программирования сравнительно небольшой размерности (в отличие от кусочно-постоянной или кусочно-линейной аппроксимации на фиксированной сетке с малым шагом, как это обычно делается). Приводятся результаты численных экспериментов, подтверждающие эффективность изучаемого подхода.
техника параметризации управления, сосредоточенная задача оптимального управления, аппроксимация квадратичными экспонентами, функция Гаусса
On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment, pp. 267-282We study the opportunities of approximation of a piecewise continuous function on a finite segment by a linear combination of $\mu$ Gaussian functions, with the object of their usage for control approximation in lumped problems of optimal control. Recall that a Gaussian function (quadratic exponent) is one defined as follows $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}} \exp\left[ -\dfrac{(x-m)^2}{2\sigma^2} \right]$. Unlike investigations carried out by another authors, we consider the case where the parameters of a Gaussian function (with the coefficients of a linear combination) are varied and selected, in particular, by minimization of the difference between a function being approximated and its approximation, or (in the case of an optimal control problem) by minimization of the cost functional. Such an approach gives the opportunity to approximate optimal control problems with lumped parameters by finite dimensional problems of mathematical programming of comparatively small dimension (as opposed to piecewise constant or piecewise linear approximation on a fixed mesh with small width which is usually used). We present also some results of numerical experiments which substantiate efficiency of the approach under study.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.