Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'argument symmetry':
Найдено статей: 2
  1. Пусть $f(z)$ — мероморфная функция на комплексной плоскости конечного порядка $\rho>0$, $\rho(r)$ — уточненный порядок в смысле Бутру такой, что $0<\alpha=\liminf\limits_{r\to\infty}\rho(r)\leqslant\limsup\limits_{r\to\infty}\rho(r)=\rho<\infty$. Если $[\alpha]<\alpha\leqslant\rho<[\alpha]+1$, то типы $T(r,f)$ и $|N|(r,f)$ относительно $\rho(r)$ совпадают. Если между $\alpha$ и $\rho$ есть целые числа, то полученный критерий формулируется в терминах верхней плотности нулей и полюсов функции $f$ и их аргументной симметрии.

    Let $f(z)$ be a meromorphic function on the complex plane of finite order $\rho>0$. Let $\rho(r)$ be a proximate order in the sense of Boutroux such that $\limsup\limits_{r\to\infty}\rho(r)=\rho$, $\liminf\limits_{r\to\infty}\rho(r)=\alpha>0$. If $[\alpha]<\alpha\leqslant\rho<[\alpha]+1$ then the types of $T(r,f)$ and $|N|(r,f)$ coincide with respect to $\rho(r)$. If there are integers between $\alpha$ and $\rho$, then the resulting criterion is formulated in terms of the upper density of zeros and poles of the function $f$ and their argument symmetry.

  2. В данной работе методом вложения строится классификация феноменологически симметричных геометрий двух множеств ранга $(n+1,m)$ при $n\geqslant2$ и $m\geqslant 3$. Суть этого метода состоит в нахождении метрических функций феноменологически симметричных геометрий двух множеств высокого ранга по известной феноменологически симметричной геометрии двух множеств ранга на единицу ниже. Так, по метрической функции феноменологически симметричной геометрии двух множеств ранга $(n+1,n)$ находится метрическая функция феноменологически симметричной геометрии двух множеств ранга $(n+1,n+1)$, по которой потом находится метрическая функция геометрии ранга $(n+1,n+2)$. Затем доказывается, что вложение феноменологически симметричной геометрии двух множеств ранга $(n+1,n+2)$ в феноменологически симметричную геометрию ранга $(n+1,n+3)$ отсутствует. С учетом симметрии метрической функции относительно первого и второго аргументов в конце работы методом математической индукции завершается классификация. Для решения поставленной задачи записываются специальные функциональные уравнения, которые сводятся к хорошо известным дифференциальным уравнениям.

    In this paper, a classification of phenomenologically symmetric geometries of two sets of rank $(n+1,m)$ with $n\geqslant 2$ and $m\geqslant 3$ is constructed by the method of embedding. The essence of this method is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets by the known phenomenologically symmetric geometries of two sets of a rank which is lower by unity. By the known metric function of the phenomenologically symmetric geometry of two sets of rank $(n+1,n)$, we find the metric function of the phenomenologically symmetric geometry of rank $(n+1,n+1)$, on the basis of which we find later the metric function of the phenomenologically symmetric geometry of rank $(n+1,n+2)$. Then we prove that there is no embedding of the phenomenologically symmetric geometry of two sets of rank $(n+1,n+2)$ in the phenomenologically symmetric geometry of two sets of rank $(n+1,n+3)$. At the end of the paper, we complete the classification using the mathematical induction method and taking account of the symmetry of a metric function with respect to the first and the second argument. To solve the problem, we write special functional equations, which reduce to the well-known differential equations.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref