Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.
гомеоморфизм окружности, точка излома, число вращения, инвариантная мера, термодинамический формализм
The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break, pp. 343-366Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i.e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A.A. Dzhalilov and K.M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i.e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i.e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.
-
Рассматривается нелинейная механическая система, динамика которой описывается векторным дифференциальным уравнением типа Льенара. Предполагается, что коэффициенты данного уравнения могут переключаться с одного набора постоянных значений на другой, причем общее количество этих наборов, вообще говоря, бесконечное. Таким образом, для задания коэффициентов уравнения используются кусочно-постоянные функции с бесконечным числом точек разрыва на всей временной оси. Предлагается способ построения разрывной функции Ляпунова, с помощью которой исследуются достаточные условия асимптотической устойчивости нулевого положения равновесия изучаемого уравнения. Полученные результаты обобщаются на случай нестационарного уравнения Льенара с разрывными коэффициентами более общего вида. В качестве вспомогательного результата работы разрабатываются методы анализа вопроса знакоопределенности и подходы к получению оценок для алгебраических выражений, представляющих собой сумму слагаемых степенного вида с нестационарными коэффициентами. Ключевой особенностью исследования является отсутствие предположений об ограниченности указанных нестационарных коэффициентов или об их отделенности от нуля. Приводятся некоторые примеры, иллюстрирующие установленные результаты.
нелинейные механические системы, разрывные коэффициенты, асимптотическая устойчивость, функции ЛяпуноваA nonlinear mechanical system, whose dynamics is described by a vector ordinary differential equation of the Lienard type, is considered. It is assumed that the coefficients of the equation can switch from one set of constant values to another, and the total number of these sets is, in general, infinite. Thus, piecewise constant functions with infinite number of break points on the entire time axis, are used to set the coefficients of the equation. A method for constructing a discontinuous Lyapunov function is proposed, which is applied to obtain sufficient conditions of the asymptotic stability of the zero equilibrium position of the equation studied. The results found are generalized to the case of a nonstationary Lienard equation with discontinuous coefficients of a more general form. As an auxiliary result of the work, some methods for analyzing the question of sign-definiteness and approaches to obtaining estimates for algebraic expressions, that represent the sum of power-type terms with non-stationary coefficients, are developed. The key feature of the study is the absence of assumptions about the boundedness of these non-stationary coefficients or their separateness from zero. Some examples are given to illustrate the established results.
-
Движение плоских твердых дисков в поле тяжести, соударяющихся с гладкой горизонтальной плоскостью, с. 49-60Рассматриваются ударные движения плоских твердых дисков над неподвижной горизонтальной плоскостью в однородном поле тяжести. Плоскость является абсолютно гладкой, соударения с плоскостью - абсолютно упругими. Диски движутся в вертикальной плоскости и вращаются вокруг горизонтальной оси, при этом они могут отрываться от плоскости с последующими ударами и прыжками. Приведены двумерные отображения таких движений дисков на фазовой плоскости при различных энергиях. Также определены стационарные точки и проведен полный анализ их линейной устойчивости. Показано, что в плоскости параметров имеется множество зон устойчивости и неустойчивости в первом приближении. Получены явные аналитические условия устойчивости и неустойчивости через параметры задачи.
The motion of a flat rigid disks bouncing off of a smooth horizontal plane in the gravity field, pp. 49-60We consider the motion of a flat rigig disks bouncing off a horizontal plane in the gravity field. The plane is assumed to be absolutely smooth and the impact absolutely elastic. The disks move in vertical plane and rotate around horizontal axis, while the disks are able to break off from the plane with following impacts and bounces. For different values of the energy, 2D projections of the disk’s trajectories onto the phase plane are given. The stationary points are determined and their linear stability is studied in detail. It is shown, there are alternating domains of linear stability and instability in the first approximation in the plane parameters. The stability conditions are expressed analytically in terms of the parameters of the problem.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.