Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'complex elastic system':
Найдено статей: 2
  1. Целью работы является получение математической модели движения составной упругой системы. Поиск собственных форм и частот предлагается проводить путем разложения колебаний по формам неподвижных элементов. Это позволяет преобразовать уравнения движения в частных производных в обыкновенные дифференциальные уравнения. Проведено моделирование движения космического аппарата, в состав которого входят упругие элементы большой протяженности (панели солнечных батарей).

    Borisov M.V., Avramenko А.А.
    Modelling of motion of the spacecraft with elastic elements, pp. 17-28

    The purpose of the article is receiption of mathematical model of motion of the complex elastic system. The normal modes and frequencies are searched by decomposition of vibrations on the modes of stationary elements of the system. It allows one to transform partial differential equations of motion in ordinary differential equations. The motion of a space craft which consists of elastic large size elements (solar panels) is modeled.

  2. Краевые задачи теории функции комплексных переменных эффективно используются при исследовании равновесия однородных упругих сред. Наиболее сложные системы краевых задач соответствуют случаю, когда упругое тело обладает анизотропными свойствами. Анизотропия среды приводит к появлению в краевых условиях функции сдвига, которая в общем случае нарушает аналитичность искомых функций. В работе проводится исследование систем краевых задач со сдвигом для аналитических векторов, соответствующих трем основным задачам теории упругости (первая, вторая и смешанная задачи). Системы аналитических векторов со сдвигом сводятся к равносильным системам из краевых задач Гильберта для аналитических функций, содержащих интегральные члены со слабой особенностью. Полученное общее решение основных краевых задач анизотропной теории упругости позволяет проверить указанные задачи на устойчивость относительно возмущений краевых условий и формы контура. Такое исследование актуально в связи с необходимостью применения приближенных численных методов к решению краевых задач со сдвигом. Основным результатом работы следует считать доказательство устойчивости систем векторных краевых задач со сдвигом для аналитических функций на пространстве Гёльдера, соответствующих основным задачам теории упругости для анизотропных тел относительно изменения краевых условий и формы контура.

    The boundary problems of the complex-variable function theory are effectively used while investigating equilibrium of homogeneous elastic mediums. The most complicated systems of the boundary value problems correspond to the case when an elastic body exhibits anisotropic properties. Anisotropy of the medium results in the drift of boundary conditions of the function that in general disrupts analyticity of the functions of interest. The paper studies systems of the boundary value problems with drift for analytic vectors corresponding to the primal elastic problems (first, second and mixed problems). Systems of analytic vectors with drift are reduced to equivalent systems of Hilbert boundary value problems for analytic functions with weak singularity integrators. The obtained general solution of the primal boundary value problems for the anisotropic theory of elasticity allows us to check the above problems for stability with respect to perturbations of boundary value conditions and contour shape. The research is relevant as there is necessity to apply approximate numerical methods to the boundary value problems with drift. The main research result comes to be a proof of stability of the systems of the vector boundary value problems with drift for analytic functions on the H\"older space corresponding to the primal problems of the elastic theory for anisotropic bodies in the case of change in the boundary value conditions and contour shape.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref