Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ t → F(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения t → F(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).
In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings R ∋ t → F(t) ∈ compU with nonempty compact sets F(t) in a complete metric space U. The set compU is equipped with the Hausdorff metric dist. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space (compU, dist). It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings R ∋ t → F(t) with the sets F(t) consisting of a finite number of points (the number depends on the t ∈ R). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping t → F(t) with sets F(t) consisting of at most n points (where n ∈ N) has a recurrent selection. If the sets F(t) of a multivalued recurrent (almost recurrent) mapping t → F(t) consist of n points for all t ∈ R, then all n continuous selections of the map F are recurrent (almost recurrent).
-
Граф частичных порядков, с. 3-12Любое бинарное отношение σ⊆X (где X - произвольное множество) порождает на множестве X2 характеристическую функцию: если (x,y)∈σ, то σ(x,y)=1, а иначе σ(x,y)=0. В терминах характеристических функций на множестве всех бинарных отношений множества X вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если X - конечное множество, то эта алгебраическая система - граф («граф графов»).
Показано, что если σ и τ - смежные отношения, то σ является частичным порядком тогда и только тогда, когда τ является частичным порядком. Исследованы некоторые особенности строения графа G(X) частичных порядков. В частности, если X состоит из n элементов, а T0(n) - это число помеченных T0-топологий, определенных на множестве X, то количество вершин в графе G(X) равно T0(n), а количество компонент связности равно T0(n-1).
Для всякого отношения частичного порядка σ определяется понятие его опорного множества S(σ), являющегося некоторым подмножеством множества X. Если X - конечное множество, а частичные порядки σ и τ принадлежат одной и той же компоненте связности графа G(X), то равенство S(σ)=S(τ) имеет место тогда и только тогда, когда σ=τ. Показано, что в каждой компоненте связности графа G(X) совокупность опорных множеств ее элементов является специфическим частично упорядоченным множеством относительно естественного отношения включения множеств.
The graph of partial orders, pp. 3-12Any binary relation σ⊆X (where X is an arbitrary set) generates a characteristic function on the set X2: if (x,y)∈σ, then σ(x,y)=1, otherwise σ(x,y)=0. In terms of characteristic functions on the set of all binary relations of the set X we introduced the concept of a binary reflexive relation of adjacency and determined the algebraic system consisting of all binary relations of a set and of all unordered pairs of various adjacent binary relations. If X is finite set then this algebraic system is a graph (“a graph of graphs”).
It is shown that if σ and τ are adjacent relations then σ is a partial order if and only if τ is a partial order. We investigated some features of the structure of the graph G(X) of partial orders. In particular, if X consists of n elements, and T0(n) is the number of labeled T0-topologies defined on the set X, then the number of vertices in a graph G(X) is T0(n), and the number of connected components is T0(n-1).
For any partial order σ there is defined the notion of its support set S(σ), which is some subset of X. If X is finite set, and partial orders σ and τ belong to the same connected component of the graph G(X), then the equality S(σ)=S(τ) holds if and only if σ=τ. It is shown that in each connected component of the graph G(X) the union of support sets of its elements is a specific partially ordered set with respect to natural inclusion relation of sets.
-
Любое бинарное отношение $\sigma\subseteq X^2$ (где $X$ - произвольное множество) порождает на множестве $X^2$ характеристическую функцию: если $(x,y)\in\sigma,$ то $\sigma(x,y)=1,$ а иначе $\sigma(x,y)=0.$ В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф («граф графов»).
Показано, что если $\sigma$ и $\tau$ - смежные отношения, то $\sigma$ является рефлексивно-транзитивным отношением тогда и только тогда, когда $\tau$ является рефлексивно-транзитивным отношением. Исследованы некоторые особенности строения графа $G(X)$ рефлексивно-транзитивных отношений. В частности, если $X$ состоит из $n$ элементов, а $T_0(n)$ - это число помеченных $T_0$-топологий, определенных на множестве $X,$ то количество компонент связности равно $\sum_{m=1}^n S(n,m) T_0(m-1),$ где $S(n,m)$ - числа Стирлинга 2-го рода. $($Хорошо известно, что количество вершин в графе $G(X)$ равно $\sum_{m=1}^nS(n,m) T_0(m).)$Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates on the set $X^2$ a characteristic function: if $(x,y)\in\sigma,$ then $\sigma(x,y)=1,$ otherwise $\sigma(x,y)=0.$ In terms of characteristic functions we introduce on the set of all binary relations of the set $X$ the concept of a binary reflexive relation of adjacency and determine an algebraic system consisting of all binary relations of the set and of all unordered pairs of various adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs’’).
It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a reflexive-transitive relation if and only if $\tau$ is a reflexive-transitive relation. Several structure features of the graph $G(X)$ of reflexive-transitive relations are investigated. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X,$ then the number of connected components is equal to $\sum_{m=1}^nS(n,m) T_0(m-1),$ where $S(n,m)$ are Stirling numbers of second kind. $($It is well known that the number of vertices in a graph $G(X)$ is equal to $\sum_{m=1}^nS(n,m) T_0(m).)$ -
Граф ациклических орграфов, с. 441-452В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ — конечное множество, то эта алгебраическая система — граф («граф графов»). Доказано, что диаметр графа бинарных отношений равен 2. Показано, что если $\sigma$ и $\tau$ — смежные отношения, то $\sigma$ — ациклическое отношение (конечный ациклический орграф) тогда и только тогда, когда $\tau$ — ациклическое отношение. Получена явная формула для числа компонент связности графа ациклических отношений.
The graph of acyclic digraphs, pp. 441-452The paper introduces the concept of a binary reflexive relation of adjacency on the set of all binary relations of a set $X$ (in terms of characteristic functions) and determines an algebraic system consisting of all binary relations of the set and of all unordered pairs of adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”). It is proved that the diameter of a graph of binary relations is 2. It is shown that if $\sigma$ and $\tau$ are adjacent relations, then $\sigma$ is an acyclic relation (finite acyclic digraph) if and only if $\tau$ is an acyclic relation. An explicit formula for the number of connected components of a graph of acyclic relations is received
-
В предыдущих работах авторов на множестве всех бинарных отношений множества $X$ введено понятие бинарного рефлексивного отношения смежности и определена алгебраическая система, состоящая из всех бинарных отношений множества $X$ и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф (граф бинарных отношений $G$). В настоящей работе для ациклических и транзитивных орграфов вводится понятие опорного множества: это совокупности $S(\sigma)$ и $S'(\sigma)$, состоящие из вершин орграфа $\sigma\in G$, имеющих нулевую полустепень захода и исхода соответственно. Доказано, что если $G_\sigma$ - связная компонента графа $G$, содержащая ациклический или транзитивный орграф $\sigma\in G$, то $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. Получена формула для числа транзитивных орграфов, имеющих фиксированное опорное множество. Аналогичная формула для числа ациклических орграфов, имеющих фиксированное опорное множество, получена авторами ранее.
On support sets of acyclic and transitive digraphs, pp. 153-161In previous works of the authors, the concept of a binary reflexive adjacency relation was introduced on the set of all binary relations of the set $X$, and an algebraic system consisting of all binary relations of the set $X$ and of all unordered pairs of adjacent binary relations was defined. If $X$ is a finite set, then this algebraic system is a graph (graph of binary relations $G$). The current paper introduces the notion of a support set for acyclic and transitive digraphs. This is the collections $S(\sigma)$ and $S'(\sigma)$ consisting of the vertices of the digraph $\sigma\in G$ that have zero indegree and zero outdegree, respectively. It is proved that if $G_\sigma $ is a connected component of the graph $G$ containing the acyclic or transitive digraph $\sigma\in G$, then $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. A formula for the number of transitive digraphs having a fixed support set is obtained. An analogous formula for the number of acyclic digraphs having a fixed support set was obtained by the authors earlier.
-
Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.
динамическая система, итерационный метод, нелинейная управляемая система, оптимальное управление, прогнозирующее управление, задача быстродействия, фазовые ограничения, допустимое управлениеThe questions of constructing admissible controls in a problem of optimal control of a nonlinear dynamic system under constraints on its current phase state are discussed. The dynamic system under consideration describes the controlled motion of a carrier rocket from the launching point to the time when the carrier rocket enters a given elliptic earth orbit. The problem consists in designing a program control for the carrier rocket that provides the maximal value of the payload mass led to the given orbit and the fulfillment of a number of additional restrictions on the current phase state of the dynamic system. The additional restrictions are due to the need to take into account the values of the dynamic velocity pressure, the attack and slip angles when the carrier rocket moves in dense layers of the atmosphere. In addition it is required to provide the fall of detachable parts of the rocket into specified regions on the earth surface. For carrier rockets of some classes, such a problem is equivalent to a nonlinear time-optimal problem with phase constraints. Two algorithms for constructing admissible controls ensuring the fulfillment of additional phase constraints are suggested. The numerical analysis of these algorithms is performed. The methodological basis of one algorithm is the application of some predictive control, which is constructed without taking into account the constraints above. Another algorithm is based on special control modes. The results of numerical modeling are presented.
-
О расширении интеграла Римана-Стилтьеса, с. 135-152Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.
функции ограниченной вариации, правильные функции, $\sigma$-непрерывные функции, интеграл Римана-Стилтьеса, $(*)$-интеграл
On the extension of a Rieman-Stieltjes integral, pp. 135-152In this paper, the properties of the regular functions and the so-called $\sigma$-continuous functions (i.e., the bounded functions for which the set of discontinuity points is at most countable) are studied. It is shown that the $\sigma$-continuous functions are Riemann-Stieltjes integrable with respect to continuous functions of bounded variation. Helly's limit theorem for such functions is also proved. Moreover, Riemann-Stieltjes integration of $\sigma$-continuous functions with respect to arbitrary functions of bounded variation is considered. To this end, a $(*)$-integral is introduced. This integral consists of two terms: (i) the classical Riemann-Stieltjes integral with respect to the continuous part of a function of bounded variation, and (ii) the sum of the products of an integrand by the jumps of an integrator. In other words, the $(*)$-integral makes it possible to consider a Riemann-Stieltjes integral with a discontinuous function as an integrand or an integrator. The properties of the (*)-integral are studied. In particular, a formula for integration by parts, an inversion of the order of the integration theorem, and all limit theorems necessary in applications, including a limit theorem of Helly's type, are proved.
-
Интегрирование системы Каупа–Буссинеска с самосогласованным источником с помощью метода обратного рассеяния, с. 153-170В данной работе рассматривается система Каупа–Буссинеска с самосогласованным источником. Показано, что система Каупа–Буссинеска с самосогласованным источником может быть проинтегрирована методом обратной задачи рассеяния. Для решения рассматриваемой задачи используются прямая и обратная задачи рассеяния уравнения Штурма–Лиувилля с потенциалом, зависящим от энергии. Определена временная эволюция данных рассеяния для уравнения Штурма–Лиувилля с энергозависимыми потенциалами, связанными с решением системы Каупа–Буссинеска с самосогласованным источником. Полученные равенства полностью определяют данные рассеяния при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для системы Каупа–Буссинеска с самосогласованным источником.
нелинейное уравнение солитона, система Каупа–Буссинеска, самосогласованный источник, метод обратного рассеяния, квадратичный пучок уравнений Штурма–Лиувилля
Integration of the Kaup–Boussinesq system with a self-consistent source via inverse scattering method, pp. 153-170In this study we consider the Kaup–Boussinesq system with a self-consistent source. We show that the Kaup–Boussinesq system with a self-consistent source can be integrated by the method of inverse scattering theory. For a solving the problem under consideration, we use the direct and inverse scattering problem of the Sturm–Liouville equation with an energy-dependent potential. The time evolution of the scattering data for the Sturm–Liouville equation with an energy-dependent potentials associated with the solution of the Kaup–Boussinesq system with a self-consistent source is determined. The obtained equalities completely determine the scattering data for any $t$, which makes it possible to apply the method of the inverse scattering problem to solve the Cauchy problem for the Kaup–Boussinesq system with a self-consistent source.
-
В первой части определено и исследовано нелинейное метрическое пространство $\langle\overline{\rm G}^\infty[a,b],d\rangle$, состоящее из функций, действующих из отрезка $[a,b]$ в расширенную числовую ось $\overline{\mathbb R}$. По определению предполагается, что для любых $x\in\overline{\rm G}^\infty[a,b]$ и $t\in(a,b)$ существуют предельные числа $x(t-0),x(t+0)\in\overline{\mathbb R}$ (и числа $x(a+0),x(b-0)\in\overline{\mathbb R}$). Доказана полнота пространства. Оно является замыканием пространства ступенчатых функций в метрике $d$. Во второй части работы определено и исследовано нелинейное пространство ${\rm RL}[a,b]$. Всякая кусочно-гладкая функция, определенная на $[a,b]$, содержится в ${\rm RL}[a,b]$. Всякая функция $x\in{\rm RL}[a,b]$ имеет ограниченное изменение. Для нее определены все односторонние производные (со значениями в метрическом пространстве $\langle\overline{\mathbb R},\varrho\rangle$). Функция левосторонних производных непрерывна слева, а функция правосторонних производных непрерывна справа. Обе функции, доопределенные на весь отрезок $[a,b]$, принадлежат пространству $\overline{\rm G}^\infty[a,b]$. В заключительной части работы определены и исследованы два подпространства пространства ${\rm RL}[a,b]$. В подпространствах сформулированы и обсуждены перспективные постановки для простейших вариационных задач.
In the first part of the paper, the nonlinear metric space $\langle\overline{\rm G}^\infty[a,b],d\rangle$ is defined and studied. It consists of functions defined on the interval $[a,b]$ and taking the values in the extended numeric axis $\overline{\mathbb R}$. For any $x\in\overline{\rm G}^\infty[a,b]$ and $t\in(a,b)$ there are limit numbers $x(t-0),x(t+0) \in\overline{\mathbb R}$ (and numbers $x(a+0),x(b-0)\in\overline{\mathbb R}$). The completeness of the space is proved. It is the closure of the space of step functions in the metric $d$. In the second part of the work, the nonlinear space ${\rm RL}[a,b]$ is defined and studied. Every piecewise smooth function defined on $[a,b]$ is contained in ${\rm RL}[a,b]$. Every function $x\in{\rm RL}[a,b]$ has bounded variation. All one-sided derivatives (with values in the metric space $\langle\overline{\mathbb R},\varrho\rangle$) are defined for it. The function of left-hand derivatives is continuous on the left, and the function of right-hand derivatives is continuous on the right. Both functions extended to the entire interval $[a,b]$ belong to the space $\overline{\rm G}^\infty[a,b]$. In the final part of the paper, two subspaces of the space ${\rm RL}[a,b]$ are defined and studied. In subspaces, promising formulations for the simplest variational problems are stated and discussed.
-
О замыканиях счётных подмножеств BN, с. 15-20Рассматривается компактификация BN счётного дискретного пространства N. В данной работе описаны свойства замыканий подмножеств BN, состоящих из различных классов точек. Показано существование точек, не принадлежащих классам, выделенным ранее.
бикомпактное расширение, компактификация Стоуна–Чеха, пространство Стоуна булевой алгебры, центрированные системы множеств.
On closures of countable subsets of BN, pp. 15-20We consider a compactification BN of a countable discrete space N. The paper describes some properties of the closures of subsets of BN, which consist of points belonging to different classes. We prove the existence of points which do not belong to the classes obtained before.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.