Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Функция Кобаяши-Грея-Такаги $\widetilde{T}(x)$ введена Кобаяши в 2002 году для вычисления цифровых сумм в кодировке Грея. Эта функция по конструкции аналогична описанной в 1903 году функции Такаги. Как и функция Такаги, функция Кобаяши-Грея-Такаги всюду непрерывна, но нигде не дифференцируема на числовой оси. В работе доказано, что глобальный максимум функции Кобаяши-Грея-Такаги равен $8/15$, причем на отрезке $[0;2]$ он достигается в тех и только тех точках интервала $(0;1)$, $16$-ричная запись которых содержит лишь цифры $4$ или $8$. Показано также, что глобальный минимум $\widetilde{T} (x)$ равен $-8/15$ и на отрезке $[0;2]$ достигается в тех и только тех точках интервала $(1;2)$, $16$-ричная запись которых содержит лишь цифры $7$ или $\langle11\rangle$. Кроме того, на отрезке $[1/2;1]$ вычислен глобальный минимум функции Кобаяши-Грея-Такаги, равный $-2/15$. Найдены глобальные экстремумы и точки экстремума функции $\log_2 x+\widetilde{T} (x)/x$. С помощью полученных результатов из формулы Кобаяши для цифровых сумм в кодировке Грея выведена точная оценка для этих сумм.
непрерывная нигде не дифференцируемая функция Кобаяши-Грея-Такаги, глобальный максимум, глобальный экстремум, двоичные цифровые суммы в кодировке ГреяThe Gray Takagi function $\widetilde{T}(x)$ was defined by Kobayashi in 2002 for calculation of Gray code digital sums. By construction, the Gray Takagi function is similar to the Takagi function, described in 1903. Like the Takagi function, the Gray Takagi function of Kobayashi is continuous, but nowhere differentiable on the real axis. In this paper, we prove that the global maximum for the Gray Takagi function of Kobayashi is equal to $8/15$, and on the segment $[0;2]$ it is reached at those and only those points of the interval $(0;1)$, whose hexadecimal record contains only digits $4$ or $8$. We also show that the global minimum of $\widetilde{T}(x)$ is equal to $-8/15$, and on the segment $[0;2]$ it is reached at those and only those points of the interval $(1;2)$, whose hexadecimal record contains only digits $7$ or $\langle11\rangle$. In addition, we calculate the global minimum of the Gray Takagi function on the segment $[1/2;1]$ and get the value $-2/15$. We find global extrema and extreme points of the function $\log_2 x + \widetilde{T} (x)/x$. By using the results obtained, we get the best estimation of Gray code digital sums from Kobayashi's formula.
-
Применение крайних под- и надаргументов, выпуклых и вогнутых оболочек для поиска глобальных экстремумов, с. 483-500Для вещественнозначных функций $f$, заданных на подмножествах вещественных линейных пространств, введены понятия крайних подаргументов и крайних надаргументов, а также понятия естественных выпуклой $\check{f}$ и вогнутой $\hat{f}$ оболочек. Показано, что для любой строго выпуклой функции $g$ любая точка глобального максимума функции $f+g$ является крайним подаргументом для функции $f$. Аналогичный результат получен для функций вида $f/v + g$. На основе этих результатов предложен метод, облегчающий поиск глобальных экстремумов функций в некоторых случаях. Доказано, что при определенных условиях функции $f/v+g$ и $\hat{f}/v+g$ имеют одинаковые глобальные максимумы и одинаковые точки глобального максимума. Приведены необходимые и достаточные условия естественности выпуклой оболочки функции. Указано достаточное условие того, что при сужении области определения $f$, значения вогнутой оболочки $\hat{f}$ на суженной области не меняются. Найдены крайние под- и надаргументы для непрерывной нигде не дифференцируемой функции Кобаяши-Грея-Такаги $K(x)$ на отрезке $[0;1]$. Кроме того, на отрезке $[0;1]$ вычислены глобальные экстремумы функции $K(x)/\cos{x}$ и глобальный максимум функции $K(x)-\sqrt{x(1-x)}$. Работа снабжена примерами и проиллюстрирована графиками.
недифференцируемая оптимизация, крайние подаргументы (подабсциссы) и крайние надаргументы (надабсциссы) функции, естественные вогнутая и выпуклая оболочки функции, функция Кобаяши-Грея-Такаги
Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema, pp. 483-500For real-valued functions $f$, defined on subsets of real linear spaces, the notions of extreme subarguments, extreme epiarguments, natural convex $\check{f}$ and natural concave $\hat{f}$ envelopes are introduced. It is shown that for any strictly convex function $g$, any point of the global maximum of the function $f+g$ is an extreme subargument for the function $f$. A similar result is obtained for functions of the form $f/v + g$. Based on these results, a method is proposed, that facilitates the search for global extrema of functions in some cases. It is proved that under certain conditions the functions $f/v+g$ and $\hat{f}/v+g$ have the same global maximum and the same points of the global maximum. Necessary and sufficient conditions for the naturalness of the convex envelope of function are given. A sufficient condition for the invariance of values of the concave envelope $\hat{f}$ during narrowing the domain of $f$ is established. Extreme sub- and epiarguments for continuous nowhere differentiable Gray-Takagi function $K(x)$ of Kobayashi on the segment $[0;1]$ are found. Moreover, the global extrema of the function $K(x)/\cos{x}$ and the global maximum of the function $K(x)-\sqrt{x(1-x)}$ on $[0;1]$ are calculated. The article is provided with examples and graphic illustrations.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.