Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
publication_info">
Малые движения идеальной стратифицированной жидкости, частично покрытой упругим льдом, с. 328-347Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.
стратифицированная идеальная жидкость, упругий лед, начально-краевая задача, дифференциальное уравнение в гильбертовом пространстве, задача Коши, сильное решениеpublication_info">
Small motions of an ideal stratified fluid partially covered with elastic ice, pp. 328-347We study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.
-
publication_info">
Начально-краевая задача для уравнений динамики вращающейся вязкой стратифицированной жидкости, с. 625-641В работе рассматривается задача о малых движениях вязкой стратифицированной жидкости, частично заполняющей контейнер, который равномерно вращается вокруг оси, сонаправленной с действием силы тяжести. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Исходная начально-краевая задача сводится к задаче Коши для дифференциального уравнения первого порядка в некотором гильбертовом пространстве. После детального изучения свойств операторных коэффициентов доказана теорема о разрешимости полученной задачи Коши. На этой основе найдены достаточные условия существования решения начально-краевой задачи, описывающей эволюцию исходной гидросистемы.
эффект стратификации в вязких жидкостях, дифференциальное уравнение в гильбертовом пространстве, задача Кошиpublication_info">
Initial-boundary value problem for the equations of dynamics of a rotating viscous stratified fluid, pp. 625-641We study the problem of small motions of a viscous stratified fluid partially filling a container that uniformly rotates around an axis co-directed by gravity. The problem is studied on the basis of an approach related to the application of the so-called operator matrix theory. To this end, we introduce Hilbert spaces and some their subspaces, as well as auxiliary boundary value problems. The original initial-boundary value problem is reduced to the Cauchy problem for a first-order differential equation in some Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the solvability of the Cauchy problem. On this basis, we find sufficient conditions for the existence of a solution of the original initial-boundary value problem describing the evolution of the hydro-system.
-
publication_info">
О тотально глобальной разрешимости эволюционного уравнения с монотонным нелинейным оператором, с. 130-149Пусть $V$ — сепарабельное рефлексивное банахово пространство, непрерывно вложенное в гильбертово пространство $H$ и плотное в нем; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ — заданное множество управлений; $A\colon X\to X^*$ — заданный вольтерров оператор, радиально непрерывный, мотонный и коэрцитивный (вообще говоря, нелинейный). Для задачи Коши, связанной с управляемым эволюционным уравнением вида \[x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{ x\in X\colon x^\prime\in X^*\},\] где $u\in U$ — управление, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ — вольтерров оператор ($W\subset\mathbf{C}(0,T;H)$), доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее для случая линейного оператора $A$ и $V=H=V^*$. Отдельно рассматриваются случаи компактного вложения пространств, усиления условия монотонности и совпадения тройки пространств $V=H=H^*$. В последних двух случаях доказывается также единственность решения. В первом случае применяется теорема Шаудера, в остальных — технология продолжения решения по времени (то есть продолжения вдоль вольтерровой цепочки). Приводятся конкретные примеры задания оператора $A$.
сильно нелинейное эволюционное уравнение в банаховом пространстве, монотонный нелинейный оператор, тотально глобальная разрешимостьpublication_info">
On totally global solvability of evolutionary equation with monotone nonlinear operator, pp. 130-149Let $V$ be a separable reflexive Banach space being embedded continuously in a Hilbert space $H$ and dense in it; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ be a given set of controls; $A\colon X\to X^*$ be a given Volterra operator which is radially continuous, monotone and coercive (and, generally speaking, nonlinear). For the Cauchy problem associated with controlled evolutionary equation as follows $$x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{x\in X\colon x^\prime\in X^*\},$$ where $u\in U$ is a control, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ is Volterra operator ($W\subset\mathbf{C}(0,T;H)$), we prove totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, a similar result proved by the author earlier for the case of linear operator $A$ and identity $V=H=V^*$ is developed. Separately, we consider the cases of compact embedding of spaces, strengthening of the monotonicity condition and coincidence of the triplet of spaces $V=H=H^*$. As to the last two cases, we prove also the uniqueness of the solution. In the first case we use Schauder theorem and in the last two cases we apply the technique of continuation of solution along with the time axis (i.e., continuation along with a Volterra chain). Finally, we give some examples of an operator $A$ satisfying our conditions.
-
publication_info">
Задача о нормальных колебаниях вязкой стратифицированной жидкости с упругой мембраной, с. 311-330Исследованы нормальные колебания вязкой стратифицированной жидкости, частично заполняющей произвольный сосуд и ограниченной сверху упругой горизонтальной мембраной. При этом рассматривается скалярная модельная задача, отражающая основные особенности векторной пространственной задачи. Получено характеристическое уравнение для собственных значений модельной задачи, изучается структура спектра и асимптотика ветвей собственных значений. Высказываются предположения о структуре спектра колебаний вязкой стратифицированной жидкости, ограниченной упругой мембраной, для произвольного сосуда. Доказано, что спектр задачи дискретен, расположен в правой комплексной полуплоскости симметрично относительно вещественной оси и имеет единственную предельную точку $+\infty$. Более того, спектр определенным образом локализован в правой полуплоскости, зона локации зависит от динамической вязкости жидкости.
эффект стратификации в вязких жидкостях, дифференциальное уравнение в гильбертовом пространстве, мембрана, нормальные колебанияpublication_info">
The problem of normal oscillations of a viscous stratified fluid with an elastic membrane, pp. 311-330Normal oscillations of a viscous stratified fluid partially filling an arbitrary vessel and bounded above by an elastic horizontal membrane are studied. In this case, we consider a scalar model problem that reflects the main features of the vector spatial problem. The characteristic equation for the eigenvalues of the model problem is obtained, the structure of the spectrum and the asymptotics of the branches of the eigenvalues are studied. Assumptions are made about the structure of the oscillation spectrum of a viscous stratified fluid bounded by an elastic membrane for an arbitrary vessel. It is proved that the spectrum of the problem is discrete, located in the right complex half-plane symmetrically with respect to the real axis, and has a single limit point $+\infty$. Moreover, the spectrum is localized in a certain way in the right half-plane, the location zone depends on the dynamic viscosity of the fluid.
-
publication_info">
О тотально глобальной разрешимости эволюционного уравнения с неограниченным оператором, с. 331-349Пусть $X$ — гильбертово пространство, $U$ — банахово пространство, $G\colon X\to X$ — линейный оператор такой, что оператор $B_\lambda=\lambda I-G$ является максимальным монотонным при некотором (произвольно заданном) $\lambda\in\mathbb{R}$. Для задачи Коши, связанной с управляемым полулинейным эволюционным уравнением вида \[x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr),\quad t\in[0;T];\quad x(0)=x_0\in X,\] где $u=u(t)\colon[0;T]\to U$ — управление, $x(t)$ — неизвестная функция со значениями в $X$, доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости задачи Коши для некоторого обыкновенного дифференциального уравнения в пространстве $\mathbb{R}$. Решение $x$ понимается в слабом смысле и ищется в пространстве $\mathbb{C}_w\bigl([0;T];X\bigr)$ слабо непрерывных функций. Фактически, обобщается аналогичный результат, доказанный автором ранее для случая ограниченного оператора $G$. Суть указанного обобщения заключается в том, что постулируемые свойства оператора $B_\lambda$ позволяют построить для него аппроксимации Иосиды линейными ограниченными операторами, распространив необходимые нам оценки с «ограниченного» на «неограниченный» случай. В качестве примеров рассматриваются начально-краевые задачи для уравнения теплопроводности и волнового уравнения.
полулинейное эволюционное уравнение в гильбертовом пространстве, максимальный монотонный оператор, тотально глобальная разрешимостьpublication_info">
On totally global solvability of evolutionary equation with unbounded operator, pp. 331-349Let $X$ be a Hilbert space, $U$ be a Banach space, $G\colon X\to X$ be a linear operator such that the operator $B_\lambda=\lambda I-G$ is maximal monotone with some (arbitrary given) $\lambda\in\mathbb{R}$. For the Cauchy problem associated with controlled semilinear evolutionary equation as follows \[x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr),\quad t\in[0;T];\quad x(0)=x_0\in X,\] where $u=u(t)\colon[0;T]\to U$ is a control, $x(t)$ is unknown function with values in $X$, we prove the totally (with respect to a set of admissible controls) global solvability subject to global solvability of the Cauchy problem associated with some ordinary differential equation in the space $\mathbb{R}$. Solution $x$ is treated in weak sense and is sought in the space $\mathbb{C}_w\bigl([0;T];X\bigr)$ of weakly continuous functions. In fact, we generalize a similar result having been proved by the author formerly for the case of bounded operator $G$. The essence of this generalization consists in that postulated properties of the operator $B_\lambda$ give us the possibility to construct Yosida approximations for it by bounded linear operators and thus to extend required estimates from “bounded” to “unbounded” case. As examples, we consider initial boundary value problems associated with the heat equation and the wave equation.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.