Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'domains of linear stability':
Найдено статей: 2
  1. Рассматриваются ударные движения плоских твердых дисков над неподвижной горизонтальной плоскостью в однородном поле тяжести. Плоскость является абсолютно гладкой, соударения с плоскостью - абсолютно упругими. Диски движутся в вертикальной плоскости и вращаются вокруг горизонтальной оси, при этом они могут отрываться от плоскости с последующими ударами и прыжками. Приведены двумерные отображения таких движений дисков на фазовой плоскости при различных энергиях. Также определены стационарные точки и проведен полный анализ их линейной устойчивости. Показано, что в плоскости параметров имеется множество зон устойчивости и неустойчивости в первом приближении. Получены явные аналитические условия устойчивости и неустойчивости через параметры задачи.

    We consider the motion of a flat rigig disks bouncing off a horizontal plane in the gravity field. The plane is assumed to be absolutely smooth and the impact absolutely elastic. The disks move in vertical plane and rotate around horizontal axis, while the disks are able to break off from the plane with following impacts and bounces. For different values of the energy, 2D projections of the disk’s trajectories onto the phase plane are given. The stationary points are determined and their linear stability is studied in detail. It is shown, there are alternating domains of linear stability and instability in the first approximation in the plane parameters. The stability conditions are expressed analytically in terms of the parameters of the problem.

  2. Классическая система реакции-диффузии — система Шнакенберга — рассматривается в ограниченной области $m$-мерного пространства, на границе которой предполагаются выполненными краевые условия Неймана. Изучается диффузионная неустойчивость стационарного пространственно-однородного решения этой системы, называемая также неустойчивостью Тьюринга, возникающая при изменении коэффициента диффузии $d.$ Путем анализа линеаризованной системы в бездиффузионном и диффузионном приближениях получено аналитическое описание области необходимых и достаточных условий неустойчивости Тьюринга на плоскости параметров системы. Показано, что одна из границ области необходимых условий является огибающей семейства кривых, ограничивающих область достаточных условий. При этом точки пересечения двух соседних кривых лежат на прямой, угловой коэффициент которой зависит от собственных значений оператора Лапласа в рассматриваемой области и не зависит от коэффициента диффузии. Найдено аналитическое выражение критического коэффициента диффузии, при котором происходит потеря устойчивости положения равновесия системы. Указаны условия, в зависимости от которых множество волновых чисел, соответствующих нейтральным модам устойчивости, счетно, конечно или пусто. Показано, что полуось $d>1$ можно представить в виде счетного объединения полуинтервалов, каждому из которых соответствует минимальное волновое число, при котором происходит потеря устойчивости, причем точки разбиения полуоси выражаются через собственные значения оператора Лапласа в рассматриваемой области.

    A classical reaction-diffusion system, the Schnakenberg system, is under consideration in a bounded domain $\Omega\subset\mathbb{R}^m$ with Neumann boundary conditions. We study diffusion-driven instability of a stationary spatially homogeneous solution of this system, also called the Turing instability, which arises when the diffusion coefficient $d$ changes. An analytical description of the region of necessary and sufficient conditions for the Turing instability in the parameter plane is obtained by analyzing the linearized system in diffusionless and diffusion approximations. It is shown that one of the boundaries of the region of necessary conditions is an envelope of the family of curves that bound the region of sufficient conditions. Moreover, the intersection points of two consecutive curves of this family lie on a straight line whose slope depends on the eigenvalues of the Laplace operator and does not depend on the diffusion coefficient. We find an analytical expression for the critical diffusion coefficient at which the stability of the equilibrium position of the system is lost. We derive conditions under which the set of wavenumbers corresponding to neutral stability modes is countable, finite, or empty. It is shown that the semiaxis $d>1$ can be represented as a countable union of half-intervals with split points expressed in terms of the eigenvalues of the Laplace operator; each half-interval is characterized by the minimum wavenumber of loss of stability.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref