Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'equations with random parameters':
Найдено статей: 4
  1. Рассматривается модель эксплуатируемой однородной популяции, заданная разностным уравнением, зависящим от случайных параметров. При отсутствии эксплуатации развитие популяции описывается уравнением $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ где $X(k)$ — размер популяции или количество биоресурса в момент времени $k,$ $f(x)$ — вещественная дифференцируемая функция, заданная на отрезке $I=[0,a],$ такая, что $f(I)\subseteq I.$ В моменты времени $k=1,2,\ldots$ из популяции извлекается случайная доля ресурса $\omega(k)\in\Omega\subseteq[0,1]$. Процесс сбора может быть остановлен, когда доля собранного ресурса превысит некоторое значение $u(k)\in[0,1)$, чтобы сохранить по возможности большую часть популяции. Тогда доля добываемого ресурса будет равна $\ell(k)=\min (\omega(k),u(k)).$ Средняя временная выгода $H_*$ от извлечения ресурса равна пределу среднего арифметического от количества добываемого ресурса $X(k)\ell(k)$ в моменты времени $1,2,\ldots,k$ при $k\to\infty.$ Решается задача выбора управления процессом промыслового изъятия, при котором значение $H_*$ можно оценить снизу с вероятностью единица по возможности наибольшим числом. Оценки средней временной выгоды существенно зависят от свойств функции $f(x),$ определяющей динамику популяции; данные оценки получены для трех классов уравнений с функциями $f(x),$ обладающими определенными свойствами. Результаты работы проиллюстрированы численными примерами, построенными методом динамического программирования на основании того, что исследуемый процесс эксплуатации популяции является марковским процессом принятия решений.

    Rodin A.A., Rodina L.I., Chernikova A.V.
    On how to exploit a population given by a difference equation with random parameters, pp. 211-227

    We consider a model of an exploited homogeneous population given by a difference equation depending on random parameters. In the absence of exploitation, the development of the population is described by the equation $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ where $X(k)$ is the population size or the amount of bioresources at time $k,$ $f(x)$ is a real differentiable function defined on $I=[0,a]$ such that $f(I)\subseteq I.$ At moments $k=1,2,\ldots$, a random fraction of the resource $\omega(k)\in\omega\subseteq[0,1]$ is extracted from the population. The harvesting process can be stopped when the share of the harvested resource exceeds a certain value of $u(k)\in[0,1)$ to keep as much of the population as possible. Then the share of the extracted resource will be equal to $\ell(k)=\min (\omega(k),u(k)).$ The average temporary benefit $H_*$ from the extraction of the resource is equal to the limit of the arithmetic mean from the amount of extracted resource $X(k)\ell(k)$ at moments $1,2,\ldots,k$ when $k\to\infty.$ We solve the problem of choosing the control of the harvesting process, in which the value of $H_*$ can be estimated from below with probability one, as large a number as possible. Estimates of the average time benefit depend on the properties of the function $f(x)$, determining the dynamics of the population; these estimates are obtained for three classes of equations with $f(x)$, having certain properties. The results of the work are illustrated, by numerical examples using dynamic programming based on, that the process of population exploitation is a Markov decision process.

  2. Исследуется асимптотическое поведение решений разностных уравнений, правая часть каждого из которых в данный момент времени зависит не только от значения в предыдущий момент, но и от случайного параметра, принимающего значения в заданном множестве $\Omega.$ Получены условия устойчивости по Ляпунову и асимптотической устойчивости положения равновесия, выполненные для всех значений случайных параметров и выполненные с вероятностью единица. Показано, что задача о сосуществовании стохастических циклов различных периодов имеет решение, которое существенно отличается от известного результата А.Н. Шарковского для детерминированного разностного уравнения, а именно - при определенных условиях из существования стохастического цикла длины $k$ следует существование цикла любой длины $\ell>k$.

    We investigate the asymptotic behavior of solutions of difference equations. Their right-hand sides at given time depend not only on the value of state at the previous moment, but also on a random value from a given set $\Omega$. We obtain conditions of Lyapunov stability and asymptotic stability of the equilibrium for all values of random parameters and with probability one. We show that the problem of coexistence of stochastic cycles of different periods has a solution, which strongly differs from a known Sharkovsky result for a determined difference equation. Under some conditions, the existence of a stochastic cycle of length $k$ implies the existence of a cycle of any length $\ell>k$.

  3. Рассматривается вероятностная модель, заданная разностным уравнением $$x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \qquad\qquad(1)$$ где $\Omega$ - заданное множество с сигма-алгеброй подмножеств $\widetilde{\mathfrak A},$ на которой определена вероятностная мера $\widetilde \mu;$ $\mu$ - продолжение меры $\widetilde \mu$ на сигма-алгебру, порожденную цилиндрическими множествами. Исследуются инвариантные множества и аттракторы уравнения со случайными параметрами $(1).$ Получены условия, при которых заданное множество является максимальным аттрактором. Показано, что внутри инвариантного множества $A\subseteq [a,b]$ могут существовать решения, хаотические с вероятностью единица. Это происходит в случае, когда существуют $m_i\in\mathbb N$ и множества $\Omega_i\subset\Omega$ такие, что $\mu(\Omega_i)>0,$ $i=1,2,$ и ${\rm cl} \,f^{m_1}(\Omega_1,A)\cap \,{\rm cl} f^{m_2}(\Omega_2,A)=\varnothing.$ Решения, хаотические с вероятностью единица, также наблюдаются в случае, когда уравнение $(1)$ либо не имеет ни одного цикла, либо все циклы отталкивающие с вероятностью единица. Результаты работы проиллюстрированы на примере непрерывно-дискретной вероятностной модели динамики изолированной популяции; для данной модели исследованы различные динамические режимы развития, которые имеют определенные отличия от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных физических системах.

    We consider the probability model defined by the difference equation $$x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \qquad\qquad (1)$$ where $\Omega$ is a given set with sigma-algebra of subsets $\widetilde{\mathfrak A},$ on which a probability measure $\widetilde \mu$ is defined. Let $\mu $ be a continuation of the measure $\widetilde \mu $ on the sigma-algebra generated by cylindrical sets. We study invariant sets and attractors of the equation with random parameters $(1).$ We receive conditions under which a given set is the maximal attractor. It is shown that, in invariant set $A\subseteq [a,b]$, there can be solutions, which are chaotic with probability one. It is observed in the case when exist an $m_i\in\mathbb N $ and sets $\Omega_i\subset\Omega $ such that $ \mu (\Omega_i)> 0,$ $i=1,2,$ and ${\rm cl}\, f^{m_1}(\Omega_1,A)\cap \,{\rm cl}\, f^{m_2}(\Omega_2,A)=\varnothing.$ It is shown, that solutions, chaotic with probability one, exist also in the case when the equation $(1)$ either has no any cycle, or all cycles are unstable with probability one. The results of the paper are illustrated by the example of a continuous-discrete probabilistic model of the dynamics of an isolated population; for this model we investigate different modes of dynamic development, which have certain differences from the modes of determined models and describe the processes in real physical systems more exhaustively.

  4. Рассматриваются модели сбора возобновляемого ресурса, заданные дифференциальными уравнениями с импульсными воздействиями, зависящими от случайных параметров. При отсутствии эксплуатации развитие популяции описывается дифференциальным уравнением $\dot x =g(x),$ которое имеет асимптотически устойчивое решение $\varphi(t)\equiv K,$ $K>0.$ Предполагаем, что длины интервалов $\theta_k=\tau_k-\tau_{k-1}$ между моментами импульсов $\tau_k$ являются случайными величинами и размеры импульсного воздействия зависят от случайных параметров $v_k,$ $k=1,2,\ldots.$ На процесс сбора можно влиять таким образом, чтобы остановить заготовку в том случае, когда ее доля окажется достаточно большой, чтобы сохранить некоторую часть ресурса для увеличения размера следующего сбора. Построено управление $\bar u=(u_1,\dots,u_k,\dots),$ ограничивающее долю добываемого ресурса в каждый момент времени $\tau_k$ таким образом, чтобы количество оставшегося ресурса, начиная с некоторого момента $\tau_{k_0},$ было не меньше заданного значения $x>0.$ Получены оценки средней временной выгоды от извлечения ресурса и приведены условия, при которых она имеет положительный предел (с вероятностью единица). Показано, что при недостаточном ограничении на извлечение ресурса значение средней временной выгоды может равняться нулю для всех или для почти всех значений случайных параметров. Таким образом, мы описываем способ добычи ресурса для режима сбора в долгосрочной перспективе, при котором постоянно сохраняется некоторая часть популяции, необходимая для ее дальнейшего восстановления, и с вероятностью единица существует предел средней временной выгоды.

    We consider models of harvesting a renewable resource given by differential equations with impulse action, which depend on random parameters. In the absence of harvesting the population development is described by the differential equation $ \dot x =g (x), $ which has the asymptotic stable solution $\varphi (t) \equiv K,$ $K> 0.$ We assume that the lengths of the intervals $ \theta_k =\tau_k-\tau _ {k-1} $ between the moments of impulses $ \tau_k $ are random variables and the sizes of impulse action depend on random parameters $v_k, $ $k=1,2, \ldots. $ It is possible to exert influence on the process of gathering in such a way as to stop preparation in the case where its share becomes big enough to keep some part of a resource for increasing the size of the next gathering. We construct the control $ \bar u = (u_1, \dots, u_k, \dots),$ which limits the share of an extracted resource at each instant of time $ \tau_k $ so that the quantity of the remaining resource, starting with some instant $ \tau _ {k_0}$, is no less than a given value $x> 0. $ We obtain estimates of average time profit from extraction of a resource and present conditions under which it has a positive limit (with probability one). It is shown that in the case of an insufficient restriction on the extraction of a resource the value of average time profit can be zero for all or almost all values of random parameters. Thus, we describe a way of long-term extraction of a resource for the gathering mode in which some part of population necessary for its further restoration constantly remains and there is a limit of average time profit with probability one.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref