Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
The Adler-van Moerbeke integrable case. Visualization of bifurcations of Liouville tori, pp. 532-539In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.
-
Критически обсуждаются различные способы определения иррегулярных и регулярных сил в звездных системах. Наиболее удовлетворительным кажется определение Эддингтона, согласно которому регулярная сила - это сила притяжения сплошной гравитирующей среды, получающейся «размешиванием» вещества по системе. Интерес представляет также определение регулярной силы как математического ожидания случайной силы. Подчеркивается, что время пересечения τc, характерное время действия регулярных сил, определяет темп коллективных процессов в системе. Существенно, что регулярные силы могут приводить и, как правило, приводят к бесстолкновительной стохастизации. В этой связи рассматривается квазиэнтропия, среднее по фазовому пространству значение произвольной выпуклой функции от крупнозернистой функции распределения. Максимум квазиэнтропии для невращающихся систем возможен только при изотропном распределении скоростей. Приводятся найденные Антоновым выражения для ее первой и второй вариаций. Если вторая вариация положительна хотя бы для некоторого изменения плотности, то это означает, что данное состояние системы не является наивероятнейшим. Отсюда следует, что эволюция вдоль последовательности политропных шаров невозможна без поступления в систему дополнительной энергии. Напоминается классификация видов фазового размешивания в бесстолкновительных системах.
Кратко рассматривается проблема столкновительной релаксации в гравитирующих системах. Излагается подход к ее решению с точки зрения теории геодезических потоков с последующим усреднением по ансамблю, что требует знания закона распределения случайной силы. Чтобы избежать обрезания распределения Хольцмарка на малых прицельных расстояниях, использовано распределение случайной силы, найденное Петровской. В этом случае оказывается, что отношение эффективного времени стохастизации к времени пересечения пропорционально N⅓/(ln N)½, где N>>1 - число тел в системе. Полученная временная шкала столкновительной эволюции практически совпадает с шкалой, ранее предложенной Генкиным.
Irregular and regular forces in stellar systems, pp. 121-145Various ways of definition of irregular (random) and regular (smoothed) forces in stellar systems are critically discussed. The most satisfactory is Eddington's one according to which the regular force is an attraction force of a continuous fluid resulting from spreading a stellar mass over a system. Also, a definition of the regular force as a mathematical expectation of a random force is of interest. It is emphasized that the crossing time, τc, a time scale of regular forces, characterizes the rate of collective processes in the system, including collisionless relaxation, that (as a rule) occurs in gravitating systems. The quasi-entropy, i.e., a result of averaging of an arbitrary convex function of a coarse-grained distribution function over the phase space, is discussed as a measure of collisionless stochastization. For non-rotating systems the maximum of quasi-entropy can be reached only for isotropic velocity distributions. Formulas for the first and second variations of quasi-entropy, found by Antonov, are given. If there exists the density variation so that the second variation of quasi-entropy is positive, then the present state of the system is not the most probable. It follows from this assertion that evolution along a sequence of polytropic spheres is not possible without some energy input to the system. We recall the classification of forms of the phase mixing in collisionless systems.
The problem of collisional relaxation in gravitating systems is briefly discussed. We state the approach to its analysis on the basis of studying geodesic flows and the ensemble averaging as the next step, which requires the knowledge of distribution of a random force. To avoid truncation of Holtsmark's distribution at small impact parameters the distribution of random force by Petrovskaya was used. In that case the ratio of the effective stochastization time to the crossing time is proportional to N⅓/(ln N)½, where N>>1 is the number of stars in the system. This evolutionary time scale is close to the one found earlier by Genkin.
-
Исследуется система $N$ ротаторов с наложенной связью, заданной условием обращения в ноль суммы косинусов углов поворота. Сформулированы уравнения динамики и приведены результаты численного моделирования для случаев $N=3$, $4$ и $5$, которые отвечают геодезическим потокам на двумерном, трехмерном и четырехмерном многообразии в компактной области (в силу периодичности конфигурационного пространства по угловым переменным). Система из трех ротаторов демонстрирует хаос, характеризуемый наличием одного положительного показателя Ляпунова, а для систем из четырех и пяти элементов имеется, соответственно, два и три положительных показателя (гиперхаос). Реализован алгоритм, позволяющий вычислять секционную кривизну многообразия в ходе численного моделирования динамики в точках траектории. В случае $N=3$ кривизна двумерного многообразия отрицательна (за исключением конечного числа точек, где она нулевая), и реализуется геодезический поток Аносова. Для $N=4$ и $5$ расчеты показывают, что условие отрицательной секционной кривизны не выполнено. Также изложена методика и представлены результаты проверки гиперболичности на основе численного анализа углов между подпространствами векторов малых возмущений, причем в случае $N=3$ гиперболичность подтверждается, а для $N=4$ и $5$ нет.
A system of $N$ rotators is investigated with a constraint given by the condition of vanishing sum of the cosines of the rotation angles. Equations of the dynamics are formulated and results of numerical simulation for the cases $N=3$, $4$, and $5$ are presented relating to the geodesic flows on a two-dimensional, three-dimensional, and four-dimensional manifold, respectively, in a compact region (due to the periodicity of the configuration space in angular variables). It is shown that a system of three rotators demonstrates chaos, characterized by one positive Lyapunov exponent, and for systems of four and five elements there are, respectively, two and three positive exponents (“hyperchaos”). An algorithm has been implemented that allows calculating the sectional curvature of a manifold in the course of numerical simulation of the dynamics at points of a trajectory. In the case of $N=3$, curvature of the two-dimensional manifold is negative (except for a finite number of points where it is zero), and Anosov's geodesic flow is realized. For $N=4$ and $5$, the computations show that the condition of negative sectional curvature is not fulfilled. Also the methodology is explained and applied for testing hyperbolicity based on numerical analysis of the angles between the subspaces of small perturbation vectors; in the case of $N=3$, the hyperbolicity is confirmed, and for $N=4$ and $5$ the hyperbolicity does not take place.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.