Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'group action':
Найдено статей: 4
  1. Рассматривается задача классификации ростков функций $(\mathbb{C}^n, 0)\to(\mathbb{C}, 0)$, эквивариантно простых относительно различных представлений конечной циклической группы $\mathbb{Z}_m$, $m\geqslant 3$, на пространствах $\mathbb{C}^n$ и $\mathbb{C}$, с точностью до эквивариантных автоморфизмов $\mathbb{C}^n$. В случае согласованных скалярных действий группы доказано, что при $n\geqslant 2$ эквивариантно простых ростков не существует. Этот результат обобщается на случаи, когда действие группы по нескольким переменным в $\mathbb{C}^n$ совпадает с действием группы в $\mathbb{C}$. Кроме того, доказано, что в случае несогласованных скалярных действий группы $\mathbb{Z}_3$ на $\mathbb{C}^2$ и $\mathbb{C}$ всякий эквивариантно простой росток эквивалентен одному из ростков $A_{3k+1}$, $k\in\mathbb{Z}_{\geqslant 0}$.

    We consider the problem of classification of function germs $(\mathbb{C}^n, 0)\to(\mathbb{C}, 0)$ that are equivariant simple with respect to various representations of a finite cyclic group $\mathbb{Z}_m$, $m\geqslant 3$, on $\mathbb{C}^n$ and $\mathbb{C}$ up to equivariant automorphisms of $\mathbb{C}^n$. In the case of matching scalar actions of the group it is shown that for $n\geqslant 2$ there exist no equivariant simple function germs. This result is generalized to the cases where the group action in several variables in $\mathbb{C}^n$ coincides with the action of the group on $\mathbb{C}.$ In addition, it is shown that in the case of non-matching scalar actions of $\mathbb{Z}_3$ on $\mathbb{C}^2$ and on $\mathbb{C}$ any equivariant simple function germ is equivalent to one of the germs $A_{3k+1}$, $k\in\mathbb{Z}_{\geqslant 0}$.

  2. В данной работе методом вложения строится классификация двуметрических феноменологически симметричных геометрий двух множеств (ФС ГДМ) ранга $(3,2)$ по ранее известной аддитивной двуметрической ФС ГДМ ранга $(2,2)$, задаваемой парой функций $g^1=x+\xi$ и $g^2 = y+\eta$. Суть этого метода состоит в нахождении функций, задающих ФС ГДМ ранга $(3,2)$ по функциям $g^1=x+\xi$ и $g^2 = y+\eta$. При решении этой задачи используем тот факт, что двуметрические ФС ГДМ ранга $(3,2)$ допускают группы преобразований размерности 4, а двуметрические ФС ГДМ ранга $(2,2)$ - размерности 2. Из этого следует, что компоненты операторов алгебры Ли группы преобразований двуметрической ФС ГДМ ранга $(3,2)$ являются решениями системы восьми линейных дифференциальных уравнений первого порядка от двух переменных. Исследуя эту систему уравнений, приходим к возможным выражениям для систем операторов. Затем из систем операторов выделяем операторы, образующие алгебры Ли. Потом, применяя экспоненциальное отображение, по найденным алгебрам Ли восстанавливаем действия групп Ли. Эти действия как раз и задают двуметрические ФС ГДМ ранга $(3,2)$.

    In this paper, the method of embedding is used to construct the classification of two-dimensional phenomenologically symmetric geometries of two sets (PS GTS) of rank $(3,2)$ from the previously known additive two-dimensional PS GTS of rank $(2,2)$ defined by a pair of functions $g^1=x+\xi$ and $g^2 = y+\eta$. The essence of this method consists in finding the functions defining the PS GTS of rank $(3,2)$ with respect to the functions $g^1=x+\xi$ and $g^2 = y+\eta$. In solving this problem, we use the fact that the two-dimensional PS GTS of rank $(3,2)$ admit groups of transformations of dimension 4, and the two-dimensional PS GTS of rank $(2,2)$ is of dimension 2. It follows that the components of the operators of the Lie algebra of the transformation group of the two-dimensional PS GTS of rank $(3,2)$ are solutions of a system of eight linear differential equations of the first order in two variables. Investigating this system of equations, we arrive at possible expressions for systems of operators. Then, from the systems of operators, we select the operators that form Lie algebras. Then, applying the exponential mapping, we recover the actions of the Lie groups from the Lie algebras found. It is precisely these actions that specify the two-dimensional PS GTS of rank $(3,2)$.

  3. Исследуется структурная устойчивость логарифмических спиралей в обобщении задачи Фуллера на случай управления из круга. Рассматривается малое возмущение относительно действия группы симметрий невозмущенной задачи. Для возмущенной задачи показано, что в окрестности особой экстремали второго порядка сохраняются экстремали в виде логарифмических спиралей. Построенные экстремали приходят на особую экстремаль за конечное время, при этом управления совершают бесконечное число оборотов вдоль окружности.

    A nonlinear perturbation of generalization of the Fuller problem with controls in a disk is considered. The structural stability of logarithmic spirals is studied. It was shown that if perturbations are small with respect to the action of the symmetry group of the unperturbed problem, then in the neighborhood of a singular second-order solution, extremals in the form of logarithmic spirals are preserved. The constructed extremals arrive at a singular extremal in a finite time, while the controls make an infinite number of revolutions along the circle.

  4. В работе формализуется задача оптимизации сопутствующего производства на гибких или реконфигурируемых производствах. В рассматриваемой постановке на входе задан набор обязательных изделий, требуется решить две взаимосвязанные подзадачи: 1) для каждого изделия из набора обязательных сформировать группу дополнительных изделий, которые могут быть произведены без изменения состояния производства, и 2) определить порядок переналадок производства между группами дополнительных изделий, а также «точки входа и выхода» в каждую из групп. В настоящей работе указанные подзадачи рассматриваются последовательно: первая подзадача сведена к задаче поиска клики максимального веса в ориентированном графе, вторая - к кластерной задаче коммивояжера. В ходе масштабных вычислительных экспериментов изучен выигрыш от применения эффективных современных методов решения обеих подзадач в сравнении с жадным решением, моделирующим рациональные действия человека-оператора в условиях большой размерности исходной комплексной задачи и ограниченного времени, имеющегося для ее решения.

    The paper is devoted to the problem of optimization of accompanying manufacturing in flexible or reconfigurable manufacturing systems. Using a set of obligatory products as an input, the initial problem is reduced to two interrelated subproblems: 1) for each product from the set of obligatory products, form a group of additional (accompanying) products that can be manufactured without changing the state of production, and 2) determine the order of manufacturing changeovers between the groups of additional products, as well as the “points of entry and exit” for each group. The subproblems are considered sequentially: the first subproblem is reduced to the maximum weight clique problem, the second - to the cluster traveling salesman problem. Large-scale computational experiments were conducted to reveal the benefits of applying effective modern methods for solving both subproblems in comparison with the greedy solution (which models the rational actions of a human operator solving large accompanying manufacturing problems in short time).

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref