Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе проводился расчет генерации шума вентилятора турбореактивного двухконтурного авиационного двигателя (ТРДД) для различных режимов его работы с помощью собственного программного пакета GHOST CFD, реализованного для графических процессоров (ГПУ). Программный пакет основан на схемах типа DRP (Dispersion Relation Preserving), имеющих высокий порядок аппроксимации и высокую разрешающую способность. Для интегрирования по времени также использовалась оптимизированная схема типа LDDRK (Low Dispersion and Dissipation Runge-Kutta). Для моделирования турбулентности использовался неявный метод крупных вихрей с релаксационной фильтрацией (LES-RF). В качестве ротор-статор-интерфейса применялись пересекающиеся (CHIMERA) сетки. Ускорение за счет использования ГПУ, по сравнению с обычным центральным процессором, составило до порядка 12-20 раз, при этом было достигнуто приемлемое время счета. Расчеты в GHOST CFD проводились в постановке «вентилятор - спрямляющий аппарат наружного контура (СА) с полными колесами лопаток». Результаты расчетов сравнивались как с экспериментальными данными, так и с результатами аналогичных расчетов в коммерческом программном пакете ANSYS CFX. При этом в части расчетов в ANSYS CFX учитывался и направляющий аппарат внутреннего контура (НА).
Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units, pp. 618-633The present paper considers the computation of noise generation by aircraft engine fan for different operating parameters with an in-house solver for Graphic Processing Units (GPUs), called GHOST CFD (GPU High Order Structured). The solver is based on DRP (Dispersion Relation Preserving) schemes which have a high order of approximation and a high resolution. An Optimized LDDRK (Low Dispersion and Dissipation Runge-Kutta) scheme was utilized for time integration. Large Eddy Simulation based on Relaxation Filtering (LES-RF) was used for the turbulence modeling. The solver implements overset (“CHIMERA”) meshes which were used as rotor-stator interface treatment. The speedup gained from GPUs utilization was about 12-20 times compared to modern 8-core CPU, allowing computations to be performed in a reasonable time period. The computations with GHOST CFD were performed in full annulus formulation with fan and outlet guide vane (OGV) blades. The results were compared with the experimental data as well as the results of similar computations in the commercial ANSYS CFX solver some of which also included inlet guide vane (IGV) blades.
-
Данная работа посвящена экспериментальной проверке конечномерной модели Андерсена–Песавенто–Ванг, описывающей плоскопараллельное движение тяжелой пластины в сопротивляющейся среде. В качестве основного метода исследования мы используем видеосъемку процесса падения пластины с PIV-измерением скорости окружающих ее потоков жидкости. По результат эксперимента были построены траектории движения пластин, линии тока и оценены частоты колебаний пластины во время движения. Мы провели ряд экспериментов для пластин различных плостностей и размеров. Траектории движения пластин, изготовленных из пластика, качественно походят на траектории, предсказанные по модели Андерсена–Песавенто–Ванг. Однако измеренные и рассчитанные частоты колебаний отличаются существенно. Для пластины, изготовленной из высокоуглеродистой стали, результаты расчетов и измерений не согласуются ни количественно, ни качественно.
The paper is devoted to the experimental verification of the Andersen–Pesavento–Wang model describing the falling of a heavy plate through a resisting medium. As a main research method the authors have used video filming of a falling plate with PIV measurement of the velocity of surrounding fluid flows. The trajectories of plates and streamlines were determined and oscillation frequencies were estimated using experimental results. A number of experiments for plates of various densities and sizes were performed. The trajectories of plates made of plastic are qualitatively similar to the trajectories predicted by the Andersen–Pesavento–Wang model. However, measured and computed frequencies of oscillations differ significantly. For a plate made of high carbon steel the results of experiments are quantitatively and qualitatively in disagreement with computational results.
-
Эффективность распараллеливания алгоритма решения уравнения PFC с использованием библиотеки PetIGA, с. 445-450В работе исследуется алгоритм решения уравнения кристаллического фазового поля (Phase Field Crystal - PFC) в гиперболической постановке. Уравнение описывает фазовые превращения из метастабильного или неустойчивого состояния на масштабе атомной плотности и является дифференциальным уравнением шестого порядка по пространству и второго порядка по времени. Алгоритм основан на методе изогеометрического анализа (IGA) и реализован посредством библиотеки PetIGA. Полученный программный код допускает распараллеливание расчетов, что существенно ускоряет процесс решения задачи. Дана оценка эффективности используемых инструментов при проведении расчетов на высокопроизводительных вычислительных кластерах. Проведен анализ эффективности исследуемого алгоритма при работе с гетерогенными вычислительными системами.
The effectiveness of parallelizing an algorithm of the PFC equation solution using PetIGA library, pp. 445-450The paper presents an algorithm for solving the equation of Phase Field Crystal (PFC) in a hyperbolic statement that allows to describe the phase transitions of metastable or unstable state at the nuclear density scale, described by a differential equation of the sixth order with respect to the space variable and the second order with respect to the time variable. The algorithm is based on the method of isogeometric analysis (IGA) and is implemented by PetIGA library. The resulting code allows parallel computations, which significantly speeds up the process of solving a problem. The effectiveness of used instruments during the calculations on high-performance computing clusters is evaluated. An analysis of the effectiveness of the current algorithm is carried out for heterogeneous computer systems.
-
Использование схемы WENO для моделирования турбулентного течения в канале с обратным уступом, с. 460-469Представлена методика моделирования турбулентного течения вязкого газа, основанная на схеме высокого порядка аппроксимации WENO (взвешенная существенно неосциллирующая схема). Данная схема характеризуется значительной устойчивостью при выполнении расчетов, так как WENO позволяет устранять нефизичные осцилляции численного решения, которые могут возникнуть в ходе вычислений. Приведена система определяющих уравнений, описывающая поток вязкого газа, основанная на системе уравнений Навье-Стокса. Разработаны и реализованы алгоритмы 3-го и 5-го порядков точности. Приведено описание численных методик использованных в расчетах потока газа. Моделирование турбулентности производилось с применением метода крупных вихрей. Предложенные алгоритмы были использованы для исследования течения вязкого газа в канале с обратным уступом. Число Рейнольдса потока газа в канале составляло Re=15000. Проведено сравнение результатов численного моделирования с экспериментальными данными.
Application of WENO scheme for simulation of turbulent flow in a channel with backward-facing step, pp. 460-469The technique of viscous gas turbulent flow simulation based on high-order approximation WENO scheme (Weighted Essentially Non-oscillatory scheme) is described. This scheme is characterized by significant stability when calculations are performed, because WENO allows to eliminate nonphysical oscillations of a numerical solution which can occur during calculations. The system of governing equations describing the flow of viscous gas based on the Navier-Stokes equations is presented. The algorithms of 3-rd and 5-th accuracy orders are developed and implemented. The numerical methods used in the calculations of gas flow are described. Turbulence modeling is carried out using the method of large vortices. The proposed algorithms have been used to study the flow of viscous gas in a channel with backward-facing step. Reynolds number of the flow in the channel was Re=15000. Comparison of simulation results with experimental data has been made.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.