Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пошаговый контактный алгоритм на основе метода декомпозиции Шварца для деформируемых тел, с. 396-413Рассматривается построение и исследование неявных численных схем интегрирования задач динамического контактного взаимодействия двух контактирующих трехмерных тел без трения в рамках альтернирующего метода Шварца. Приводятся результаты тестирования контактного алгоритма декомпозиции Шварца с использованием схемы HTT-$\alpha$ в комбинации с методом перераспределения массы на границе области контакта.
Space semidiscrete formulation of contact algorithm based on the Schwarz's decomposition method for deformable bodies, pp. 396-413Implicit integration scheme for Schwarz alternating method for dynamic contact interaction problems of two interacting volumetric bodies without friction is considered. The paper presents the results of testing a contact algorithm of Schwarz domain decomposition using HTT-$\alpha$ scheme in consistent method redistribution of mass on the boundary of contact. To prevent artificial oscillations on the contact boundary together with common dissipative properties of the $\alpha$-scheme, the consistent mass redistribution method was used. The main advantage of this approach is the option to use multigrid methods to speed up the algorithm on subdomains, also there is no need for contact elements, contact parameters, Lagrange multipliers or regularization. Numerical examples including various contact zones, different materials of contact bodies and comparisons with measurements of other methods show the wide applicability of the derived algorithm.
-
Изложены базовые принципы линеаризации уравнений произвольной многокомпонентной механической системы. Описаны общие подходы к формированию специализированных численных методов интегрирования этих систем, которые основаны на классических методах прямого интегрирования уравнений динамики метода конечных элементов. Подробно рассматривается метод, базирующийся на известном неявном методе Ньюмарка. Выведены расчетные формулы метода, проведено краткое исследование на устойчивость. Кроме того, приведены примеры тестовых расчетов, выполненных с помощью специализированного метода Ньюмарка в программном комплексе динамического анализа многокомпонентных механических систем EULER.
многокомпонентная механическая система, метод конечных элементов, жесткая задача, линеаризация системы, неявные численные методы интегрирования уравнений, метод НьюмаркаThe article covers the basic principles of the linearization of dynamic equations for an arbitrary multibody mechanical system. General approaches to the formation of specialized numerical methods for integrating multibody systems are described, which are based on classical methods of finite-element method for direct integration of the dynamic equations. The method based on the known implicit Newmark method is considered. The calculation formulae are derived and a brief study on stability is conducted. In addition, the examples of test calculation are given, which are performed using the Newmark specialized method by means of bundled EULER software for dynamic analysis of multibody mechanical systems.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.