Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Дифференциальные включения типа среднего поля возникают в рамках теории управления средним полем при овыпуклении правой части. Мы исследуем случай, когда правая часть дифференциального включения зависит от положения агента и от распределения всех агентов полунепрерывно. Основной результат статьи состоит в доказательстве существования и стабильности решений дифференциальных включений типа среднего поля. Также мы показываем полунепрерывную снизу зависимость функции цены задачи оптимального управления средним полем от начального состояния и параметра.
Mean field type differential inclusions appear within the theory of mean field type control through the convexification of a right-hand side. We study the case when the right-hand side of a differential inclusion depends on the state of an agent and the distribution of agents in an upper semicontinuous way. The main result of the paper is the existence and the stability of the solution of a mean field type differential inclusion. Furthermore, we show that the value function of the mean field type optimal control problem depends on an initial state and a parameter semicontinuously.
-
Позиционные стратегии в задачах управления средним полем на пространстве конечного числа состояний, с. 15-21Рассматривается задача оптимального управления системой бесконечного числа однотипных агентов. Пространство допустимых для агентов состояний является конечным. В рассматриваемой постановке имеется общий для всех агентов оптимизируемый функционал и общий центр управления, выбирающий стратегию для агентов. Предполагается, что выбираемая стратегия является позиционной. В настоящей работе рассматривается случай, когда динамика состояний агентов задается некоторой марковской цепью с непрерывным временем. Предполагается, что матрица Колмогорова этой цепи в каждом состоянии зависит от текущего состояния, выбранного управления и распределения всех агентов. Для такой задачи в работе показано, что решение в классе позиционных стратегий может быть построено на основе решения детерминированной задачи оптимального управления в конечномерном фазовом пространстве.
We consider an optimal control problem for an infinite amount of agents of the same type. We assume that agents have a finite state space. The given formulation of the problem involves an objective functional that is common for all agents and a common control center that chooses a strategy for agents. A chosen strategy is supposed to be positional. In this paper we consider a case when the dynamics of agents is given by a Markov chain with continuous time. It is assumed that the Kolmogorov matrix of this chain in each state depends on the current state, the chosen control and the distribution of all agents. For the original problem, it is shown that concerning positional strategies the solution can be obtained through the solution of the deterministic control problem in a finite-dimensional phase space.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.