Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'measurement of viscosity':
Найдено статей: 3
  1. Потапов И.И., Потапов Д.И., Королёва К.С.
    О движении речного потока в сечении изогнутого русла, с. 577-593

    На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I., Koroleva K.S.
    On the river flow motion in the bend channel cross-section, pp. 577-593

    At the river bed curves, secondary flow normal to the main flow direction are formed. Depending on the channel geometry, there may be several secondary flows in the cross-section, and they may have different scales. Even a small secondary cross-section flow affects the parameters of the hydrodynamic flow and this influence must be taken into account when modeling riverbed processes and researching coast deformations of the channel. Three-dimensional modeling of such multi-scale processes requires large computational costs and is currently possible only for small model channels. Therefore, a reduced-dimensional model is proposed in this paper to study coastal processes. The performed reduction of the problem from a three-dimensional model of river flow motion to a two-dimensional one in the plane of the channel cross-section assumes that the hydrodynamic flow is quasi-stationary and the hypotheses on the asymptotic behavior of the flow along the flow coordinate are fulfilled for it. Taking into account these limitations, a mathematical model of the problem of a stationary turbulent calm river flow in a channel cross-section is formulated in this work. The problem is formulated in a mixed velocity–vortex–stream function formulation. Specifying of the boundary conditions on the flow free surface for the velocity field determined in the normal and tangential directions to the cross-section axis is required as additional conditions for the problem reduction. It is assumed that the values of this velocity field should be determined from the solution of auxiliary problems or obtained from data of natural or experimental measurements.

    The finite element method in the Petrov–Galerkin formulation is used for the numerical solution of the formulated problem. A discrete analog of the problem is obtained and an algorithm for its solution is proposed. The performed numerical studies showed generally good agreement between the obtained solutions and the known experimental data. The authors associate the errors in the numerical results with the need for a more accurate determination of the radial component of the velocity field in the cross-section by selecting and calibrating a more suitable model for turbulent viscosity calculating and a more accurate determination of the boundary conditions on the cross-section free boundary.

  2. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

    The axisymmetric model based on the Stokes equations is proposed to investigate the multi-ring pattern formation in two-layer creeping flow with variable thickness of layers. Each layer has uniform density and viscosity. The upper layer is lighter than the lower layer. The flow is generated by both surface and interface geometry. The effect of surface tension is supposed to be negligible. We apply the method of multiple scales to obtain the governing equations describing instability in the form of wave in the flow. Using the Fourier-Laplace method, we analyze the small-amplitude leading behavior of the instability. The asymptotic study reveals that this kind of instability manifests itself as axisymmetric wave which length is comparable with layer thickness; moreover, layer thicknesses play a major role in spatial distribution of wave extrema. The other model parameters alter mostly the wave amplitude. The equation relating extrema distribution to layer thicknesses is derived. We apply the obtained results to study a ring spacing rule observed for most multi-ring basins on the Moon. Using parameters of some lunar multi-ring basins we calculate the consecutive crest radii of the unstable wave and compare the results of simulation with the measured ring radii.

     

  3. В статье представлены результаты моделирования гидродинамических процессов, происходящих в рабочем пространстве капиллярных вискозиметров постоянного расхода трёх различных конфигураций. Результаты получены путем численного решения уравнений Навье-Стокса для ламинарного течения с использованием метода конечных элементов. Установлено влияние длины капиллярной трубки и формы дна цилиндра на метрологические характеристики вискозиметра.

    The results of the modeling of hydrodynamic processes in the operating space of 3 different types of fixed flow capillary viscometers are represented in the article. The results were obtained from computational solution of the Navier-Stokes equation for laminar flow with the use of finite-element method. The influence of capillary tube and cylinder bottom shape on the metrological performance of viscometer was established.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref