Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'mobile robot':
Найдено статей: 4
  1. В работе рассматривается безвинтовой робот, перемещающийся по поверхности жидкости за счет вращения внутреннего ротора. Корпус робота в сечении имеет форму симметричного крылового профиля NACA 0040. Записаны уравнения движения в виде классических уравнений Кирхгофа, дополненных слагаемыми, описывающими вязкое сопротивление. На основе анализа полученной модели предложен закон управления. Проведены исследования влияния различных параметров модели на траекторию движения робота.

    We consider a propellerless robot that moves on the surface of a fluid by rotating of the internal rotor. The robot shell has a symmetric shape of NACA 0040 airfoil. The equations of motion are written in the form of classical Kirchhoff equations with terms describing the viscous friction. The control action based on the derived model is proposed. The influences of various model parameters on the robot's trajectory have been studied.

  2. Представлены результаты исследования работоспособности следящего пневмопривода руки робота с опорной моделью в контуре управления для компенсации взаимовлияния движений различных степеней подвижности, которые могут проявляться в виде силовых и параметрических возмущений, искажающих заданный закон движения. Проведены математическое моделирование следящего пневмопривода линейного перемещения руки робота, работающего в цилиндрической системе координат, а также натурные испытания привода с предложенной системой управления. Полученные результаты показывают удовлетворительное совпадение расчетных и экспериментальных данных и возможность частичной компенсации влияния силовых возмущений на заданный закон движения привода.

    This paper presents the results of investigation of the working capacity of a servopneumatic actuator with a reference model in the control system. This control scheme is used to compensate for the mutual influence of movements of various degrees of mobility in industrial robots in the form of force and parametric perturbations. Mathematical modeling and a full-scale test of the servopneumatic actuator with a reference model in the control system are carried out. The mathematical model contains thermodynamical pressure and temperature differential equations of compressed air state in pneumatic cylinder chambers; logical relationships determining the conditions for connection of the chambers with a feed line or atmosphere; equations describing the dynamics of the servovalve; equations of mechanical force balance on the cylinder shaft and relationships describing the control system. The results obtained show a satisfactory agreement between the calculated and experimental data and the possibility of partial compensation for the influence of the force perturbations on the motion of the servopneumatic actuator. Based on the linearized mathematical model, the smoothing coefficient was calculated with respect to external force disturbances. The control system with a reference model in the control loop makes it possible to increase the noise immunity by 23 % in comparison with the conventional control system.

  3. Берестова С.А., Мисюра Н.Е., Митюшов Е.А.
    Кинематическое управление движением колесных транспортных средств, с. 254-266

    В работе рассматривается вывод законов кинематического управления движением трехколесного и четырехколесного экипажей с жесткими колесами вдоль произвольной гладкой траектории. Параметрами управления для трехколесного экипажа выбраны независимые углы вращения ведущих колес. Параметром управления четырехколесного экипажа выбран угол поворота переднего колеса в двухколесной модели автомобиля, определяемый углами поворота передних колес по принципу рулевого управления Аккермана. Установлено, что произведение скорости любой точки корпуса автомобиля на ориентированную кривизну ее траектории является кинематическим инвариантом, определяющим угловую скорость автомобиля. Приведены результаты численного моделирования и анимации движения трехколесного и четырехколесного экипажей, демонстрирующие адекватность предлагаемой модели кинематического управления. Обсуждаются возможности применения установленных законов кинематического управления движением при уточнении алгоритмов параллельной парковки, при решении навигационных задач управления механическими транспортными средствами при помощи навигационных систем ГЛОНАСС и GPS, при решении задач управления мобильными роботами с помощью датчиков слежения, а также при проектировании автодорог, транспортных развязок, паркингов, автозаправок, дорожных пунктов питания и при создании тренажеров.

    Berestova S.A., Misyura N.E., Mityushov E.A.
    Kinematic control of vehicle motion, pp. 254-266

    The derivation of laws of kinematic control of motion of three-wheeled and four-wheeled carriages with hard wheels along an arbitrary smooth trajectory is considered in this paper. The independent angles of rotation of driving wheels are chosen as parameters of control for a three-wheeled carriage. The angle of rotation of a front wheel in the two-wheeled car models defined by the angles of rotation of front wheels on the basis of Ackermann steering is chosen as a control parameter for a four-wheeled carriage. It is established that the product of the velocity of any point of the vehicle body and the oriented curvature of its trajectory is a kinematic invariant determining the angular velocity of a vehicle. The paper presents the results of numerical modeling and animation of three-wheeled and four-wheeled carriages motion demonstrating the adequacy of the proposed model of kinematic control. The use of the proposed model can be a significant refinement of algorithms of parallel parking as well as the solution of navigation problems of management of motor vehicles using GPS and GLONASS navigation systems and problems of control of mobile robots with the help of tracking sensors. Also the proposed model can be useful for designing the motor roads, road interchanges, single-level and multilevel Parking lots, gasoline stations, on-the-go fast food stations and for the creation of car-simulators.

  4. Ветчанин Е.В., Караваев Ю.Л., Калинкин А.А., Клековкин А.В., Пивоварова Е.Н.
    Модель безвинтового подводного робота, с. 544-553

    Данная статья посвящена созданию модели подводного робота, приводящегося в движение с помощью расположенных внутри него роторов. Подобная конструкция не имеет подвижных элементов, взаимодействующих с окружающей средой, что минимизирует негативное воздействие на нее и повышает бесшумность движения робота в жидкости. Несмотря на многочисленные дискуссии о возможности и эффективности движения за счет перемещения внутренних масс, большое количество работ, опубликованных в последнее время, подтверждает актуальность исследований. В статье представлен обзор работ, направленных на изучение движения на основе перемещения внутренних масс. Предложена конструкция безвинтового подводного робота, перемещающегося за счет вращения внутренних роторов, для проведения теоретических и экспериментальных исследований. При проведении теоретических исследований модель представляет собой полый эллипсоид с расположенными внутри тремя роторами, оси вращения которых взаимно ортогональны. Для предложенной модели безвинтового подводного робота получены уравнения движения в виде классических уравнений Кирхгофа.

    Vetchanin E.V., Karavaev Y.L., Kalinkin A.A., Klekovkin A.V., Pivovarova E.N.
    A model of a screwless underwater robot, pp. 544-553

    The paper is devoted to the development of a model of an underwater robot actuated by inner rotors. This design has no moving elements interacting with an environment, which minimizes a negative impact on it, and increases noiselessness of the robot motion in a liquid. Despite numerous discussions on the possibility and efficiency of motion by means of internal masses' movement, a large number of works published in recent years confirms a relevance of the research. The paper presents an overview of works aimed at studying the motion by moving internal masses. A design of a screwless underwater robot that moves by the rotation of inner rotors to conduct theoretical and experimental investigations is proposed. In the context of theoretical research a robot model is considered as a hollow ellipsoid with three rotors located inside so that the axes of their rotation are mutually orthogonal. For the proposed model of a screwless underwater robot equations of motion in the form of classical Kirchhoff equations are obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref