Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'multigrid methods':
Найдено статей: 2
  1. Рассмотрена адаптация уравнений Навье-Стокса к универсальной многосеточной технологии с целью создания высокоэффективного алгоритма для решения задач вычислительной гидродинамики.

    We study an adaptation of the Navier-Stokes equations to the robust multigrid technique in order to develop efficient solver for CFD problems.

  2. Рассматривается построение и исследование неявных численных схем интегрирования задач динамического контактного взаимодействия двух контактирующих трехмерных тел без трения в рамках альтернирующего метода Шварца. Приводятся результаты тестирования контактного алгоритма декомпозиции Шварца с использованием схемы HTT-$\alpha$ в комбинации с методом перераспределения массы на границе области контакта.

    Implicit integration scheme for Schwarz alternating method for dynamic contact interaction problems of two interacting volumetric bodies without friction is considered. The paper presents the results of testing a contact algorithm of Schwarz domain decomposition using HTT-$\alpha$ scheme in consistent method redistribution of mass on the boundary of contact. To prevent artificial oscillations on the contact boundary together with common dissipative properties of the $\alpha$-scheme, the consistent mass redistribution method was used. The main advantage of this approach is the option to use multigrid methods to speed up the algorithm on subdomains, also there is no need for contact elements, contact parameters, Lagrange multipliers or regularization. Numerical examples including various contact zones, different materials of contact bodies and comparisons with measurements of other methods show the wide applicability of the derived algorithm.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref