Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.
скалярное произведение, векторное поле, уравнения Максвелла, разрешимость, функциональные пространства.The paper is devoted to studying of estimations of scalar products of vector fields and their application in the proof of solvability for mathematical physics problems. The estimations of scalar products of vector field were proved in weighted functional spaces of summable functions. As an example of the application of such estimations there was proved the solvability for the problem of determination of stationary magnetic field in whole three-dimensional Euclidian space containing bounded conducting domain. The association between the proposed problem statement and the corresponding variational statement was shown too. There was investigated the possibility of determination of another unknown functions (electric field, volume density of electrical charge) inside the conducting domain.
-
Сопоставляя реальному пространству декартову систему координат (линейное векторное пространство), И. Ньютон рассматривал его как вместилище и не наделял какой-либо внутренней структурой. Такой подход приводит к феноменологическому описанию экспериментально наблюдаемых силовых полей и вынуждает каждому силовому полю сопоставлять источник. Некорректная, однако, весьма эффективная в вопросах статики интерпретация алгебры Клиффорда в виде аналитической геометрии, получившая повсеместное признание благодаря усилиям Хевисайда, не является алгеброй в ее математическом понимании. Следствием этого является, например, отсутствие в классической механике меры (спин), наблюдаемой экспериментально.
В отличие от такого подхода в работе реальному пространству сопоставляется векторное пространство, обладающее алгеброй Клиффорда, что позволяет вводить меры, связанные с понятиями триада, четыреада, и допускают совместное рассмотрение большого количества трехмерных полей. Объектам реальности, которые обозначаются терминами «заряд», «точечная масса», сопоставляются силовые поля, объясняющие результаты экспериментов, лежавших в основе квантовой механики в прошлом веке. Особенности силовых полей отнесены к особенностям метрики и допускают существование статически устойчивых образований без каких-либо дополнительных постулатов.Assigning the Cartesian coordinate system to real space (linear vector space), I. Newton considered it as a container and didn't associate it with any internal structure. Such an approach leads to the phenomenological description of experimentally observed force fields and compels to attribute a source to each force field. Incorrect (but effective in the aspect of static) interpretation of Clifford algebra in the form of analytical geometry which gained universal recognition thanks to Heaviside's efforts is not algebra in its mathematical understanding. A corollary of this fact is, for example, the absence of concept of measure (spin) in classical mechanics that is experimentally observed.
In contrast to such approach, we assign the vector space having Clifford algebra to real space. This allows us to introduce measures connected with concepts of triad and quadruple and permits a joint consideration of a large number of three-dimensional fields. With objects of reality which are designated by terms of charge and dot mass we associate the force fields explicating the results of experiments that formed the basis of quantum mechanics last century. Features of force fields are referred to as features of a metric and permit existence of statically steady formations without any additional postulates. -
Группой симметрии данного дифференциального уравнения называется группа преобразований, которые переводят решения уравнения в решения. Если известны инфинитезимальные образующие группы симметрий, то мы можем находить инвариантные решения относительно этой группы. Для систем уравнений с частными производным группу симметрий можно использовать, чтобы явно найти частные типы решений, которые сами являются инвариантными относительно некоторой подгруппы полной группы симметрий системы. Например, решения уравнения с частными производными от двух независимых переменных, инвариантные относительно заданной однопараметрической группы симметрий, находятся решением системы обыкновенных дифференциальных уравнений. Класс инвариантных относительно группы решений включает в себя точные решения, имеющие непосредственное математическое или физическое значения. В работе с помощью известных инфинитезимальных образующих некоторых групп симметрий двумерного уравнения теплопроводности найдены решения, инвариантные относительно этих групп. Сначала рассматривается двумерное уравнение теплопроводности с источником тепловыделения (с источником теплопоглощения), которое описывает процесс распространения тепла на плоской области. Для этого случая найдено семейство точных решений, зависящее от произвольных постоянных. Затем найдены инвариантные решения уравнения теплопроводности без источника тепла и без источника поглощения.
The symmetry group of a given differential equation is the group of transformations that translate the solutions of the equation into solutions. If the infinitesimal generators of symmetry groups are known, then we can find solutions that are invariant under this group. For systems of partial differential equations, the symmetry group can be used to explicitly find particular types of solutions that are themselves invariant under a certain subgroup of the full symmetry group of the system. For example, solutions of an equation with partial derivatives of two independent variables, invariant under a given one-parameter symmetry group, are found by solving a system of ordinary differential equations. The class of solutions that are invariant with respect to a group includes many exact solutions that have immediate mathematical or physical meaning. In this paper, using the well-known infinitesimal generators of some symmetry groups of the two-dimensional heat conduction equation, solutions are found that are invariant with respect to these groups. First we consider the two-dimensional heat conduction equation with a source that describes the process of heat propagation in a flat region. For this case, a family of exact solutions was found, depending on an arbitrary constant. Then invariant solutions of the two-dimensional heat conduction equation without source are found.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.