Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'piecewise constant approximation of control':
Найдено статей: 3
  1. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

    Some properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients  αωSEn+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.

     

  2. Изучаются аппроксимирующие конечномерные задачи математического программирования, возникающие в результате кусочно-постоянной дискретизации управления (в рамках техники параметризации управления) при оптимизации распределенных систем достаточно широкого класса. Устанавливается непрерывность по Липшицу градиентов функций аппроксимирующих задач; приводятся соответствующие формулы градиентов, использующие аналитическое решение исходной управляемой системы и сопряженной к ней системы и тем самым обеспечивающие возможность алгоритмического разделения проблемы оптимизации и проблемы решения управляемой начально-краевой задачи. Применение к численному решению задач оптимизации иллюстрируется на примере задачи Коши-Дарбу, управляемой по интегральному критерию. Приводятся результаты численного решения соответствующей аппроксимирующей задачи в системе MatLab с помощью программы fmincon, а также авторской программы, реализующей метод условного градиента. Кроме того, рассматривается задача безусловной минимизации, получаемая из аппроксимирующей задачи с ограничениями методом синус-параметризации. Приводятся результаты численного решения указанной задачи в системе MatLab с помощью программы fminunc, а также авторских программ, реализующих методы наискорейшего спуска и BFGS. Результаты численных экспериментов подробно анализируются.

    We study approximating finite-dimensional mathematical programming problems arising from piecewise constant discretization of the control (in the framework of control parametrization technique) in the course of optimization of distributed parameter systems of a rather wide class. We establish the Lipschitz continuity for gradients of approximating problems. We present their formulas involving analytical solutions of an original controlled system and their adjoint one, thereby giving the opportunity for algorithmic separation of the optimization problem itself and the problem of solving a controlled system. Application of the approach under study to numerical optimization of distributed systems is illustrated by example of the Cauchy-Darboux system controlled by an integral criterion. We present the results of numerical solving the corresponding approximation problem in MatLab with the help of the program fmincon and also an author-developed program based on the conditional gradient method. Moreover, the unconstrained minimization problem is investigated that arises from the constrained approximation problem with applying the sine parametrization method. We present the results of numerical solving this problem in MatLab with the help of the program fminunc and also two author-developed programs based on the steepest descent and BFGS methods, respectively. The results of all numerical experiments are analyzed in detail.

  3. Изучаются возможности аппроксимации произвольной кусочно-непрерывной функции на конечном отрезке линейной комбинацией $\mu$ функций Гаусса с целью дальнейшего их использования для аппроксимации управлений в сосредоточенных задачах оптимального управления. Напомним, что функция Гаусса (квадратичная экспонента) - это функция вида $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}} \exp\left[ -\dfrac{(x-m)^2}{2\sigma^2} \right]$. В отличие от исследований, проводившихся ранее другими авторами, рассматривается случай, когда параметры функций Гаусса (так же как и коэффициенты линейной комбинации) являются варьируемыми и подбираются, в частности, путем минимизации отклонения аппроксимации от аппроксимируемой функции либо (в том случае, когда речь идет об аппроксимации задачи оптимального управления) путем минимизации целевого функционала. Этот подход позволяет аппроксимировать задачи оптимального управления сосредоточенными системами конечномерными задачами математического программирования сравнительно небольшой размерности (в отличие от кусочно-постоянной или кусочно-линейной аппроксимации на фиксированной сетке с малым шагом, как это обычно делается). Приводятся результаты численных экспериментов, подтверждающие эффективность изучаемого подхода.

    We study the opportunities of approximation of a piecewise continuous function on a finite segment by a linear combination of $\mu$ Gaussian functions, with the object of their usage for control approximation in lumped problems of optimal control. Recall that a Gaussian function (quadratic exponent) is one defined as follows $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}} \exp\left[ -\dfrac{(x-m)^2}{2\sigma^2} \right]$. Unlike investigations carried out by another authors, we consider the case where the parameters of a Gaussian function (with the coefficients of a linear combination) are varied and selected, in particular, by minimization of the difference between a function being approximated and its approximation, or (in the case of an optimal control problem) by minimization of the cost functional. Such an approach gives the opportunity to approximate optimal control problems with lumped parameters by finite dimensional problems of mathematical programming of comparatively small dimension (as opposed to piecewise constant or piecewise linear approximation on a fixed mesh with small width which is usually used). We present also some results of numerical experiments which substantiate efficiency of the approach under study.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref