Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пусть $n,m,\ell,s\in\mathbb{N}$ - заданные числа, $\Pi\subset\mathbb{R}^n$ - измеримое ограниченное множество, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ - банаховы идеальные пространства измеримых на $\Pi $ функций, $\mathcal{D}\subset\mathcal{U}^{s}$ - выпуклое множество, $\mathcal{A}$ - некоторый класс линейных ограниченных операторов $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. Изучается управляемое функционально-операторное уравнение типа Гаммерштейна: $$ x(t)=\theta(t)+ A\Bigl[f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \qquad \qquad (1) $$ где набор параметров $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ - управляющий; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ - заданная функция, измеримая по $t\in\Pi$, непрерывная по $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ и удовлетворяющая некоторым естественным предположениям. Уравнение $(1)$ является удобной формой описания широкого класса управляемых распределенных систем. Для указанного уравнения доказывается теорема о достаточных условиях глобальной разрешимости для всех $u\in\mathcal{D}$, $A\in\mathcal{A}$ и $\theta$ из поточечно ограниченного множества. Для исходного уравнения определяются мажорантное и минорантное неравенства, получаемые из уравнения $(1)$ оценкой правой части соответственно сверху и снизу. Теорема доказывается при условии глобальной разрешимости мажорантного и минорантного неравенств. В качестве приложения полученных общих результатов доказывается теорема о тотальной (по всему множеству допустимых управлений) глобальной разрешимости смешанной задачи для системы гиперболических уравнений первого порядка с управляемыми старшими коэффициентами.
тотально глобальная разрешимость, функционально-операторное уравнение типа Гаммерштейна, поточечная оценка решений, система гиперболических уравнений первого порядка с управляемыми старшими коэффициентами
On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator, pp. 230-243Let $n,m,\ell,s\in\mathbb{N}$ be given numbers, $\Pi\subset\mathbb{R}^n$ be a measurable bounded set, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ be Banach ideal spaces of functions measurable on the set $\Pi$, $\mathcal{D}\subset\mathcal{U}^{s}$ be a convex set, $\mathcal{A}$ be some class of linear bounded operators $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. We study the controlled Hammerstein type functional operator equation as follows $$ x(t)=\theta(t)+ A\Bigl[ f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \qquad \qquad (1) $$ where $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ is the set of controlled parameters; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ is a given function measurable with respect to $t\in\Pi$, continuous with respect to $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ and satisfying to certain natural hypotheses. Eq. $(1)$ is a convenient form of representation of the broad class of controlled distributed systems. For the equation under study we prove a theorem concerning sufficient conditions of global solvability for all $u\in\mathcal{D}$, $A\in\mathcal{A}$ and $\theta$ from a pointwise bounded set. For the original equation we define some majorant and minorant inequalities obtaining them from Eq. $(1)$ with the help of upper and lower estimates of the right-hand side. The theorem is proved providing global solvability of the majorant and minorant inequalities. As an application of obtained general results we prove a theorem concerning the total (with respect to the whole set of admissible controls) global solvability of the mixed boundary value problem for a system of hyperbolic equations of the first order with controlled higher coefficients.
-
Рассматривается нелинейное эволюционное операторное уравнение второго рода $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, в произвольном банаховом пространстве $X$, с эволюционными (вольтерровыми) операторами $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]\colon W[0;T]\to L_p\bigl([0;T];Y\bigr)$ общего вида, $Y$ - произвольное банахово пространство, $u\in\mathcal{D}$ - управляющий параметр. Для указанного уравнения доказываются теорема единственности решения, а также теорема о достаточных условиях тотально (по множеству допустимых управлений) глобальной разрешимости при варьировании управления. При некоторых естественных предположениях, связанных с поточечными по времени $t$ оценками, заключение об однозначной тотально глобальной разрешимости делается, исходя из факта глобальной разрешимости системы сравнения, в качестве которой выступает система функционально-интегральных неравенств (можно заменить ее системой уравнений аналогичного типа, а в некоторых случаях - системой обыкновенных дифференциальных уравнений) относительно функций одного переменного $t\in[0;T]$ со значениями в пространстве $\mathbb{R}$. В качестве примера устанавливаются условия однозначной тотально глобальной разрешимости управляемой нелинейной нестационарной системы уравнений Навье-Стокса.
нелинейное эволюционное операторное уравнение второго рода, тотально глобальная разрешимость, система Навье-СтоксаWe consider the nonlinear evolutionary operator equation of the second kind as follows $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, with Volterra type operators $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]$: $W[0;T]\to L_p\bigl([0;T];Y\bigr)$ of the general form, a control $u\in\mathcal{D}$ and arbitrary Banach spaces $X$, $Y$. For this equation we prove theorems on solution uniqueness and sufficient conditions for totally (with respect to set $\mathcal{D}$) global solvability. Under natural hypotheses associated with pointwise in $t\in[0;T]$ estimates the conclusion on univalent totally global solvability is made provided global solvability for a comparison system which is some system of functional integral equations (it could be replaced by a system of equations of analogous type, and in some cases, of ordinary differential equations) with respect to unknown functions $[0;T]\to\mathbb{R}$. As an example we establish sufficient conditions of univalent totally global solvability for a controlled nonlinear nonstationary Navier-Stokes system.
-
О вольтерровом обобщении метода монотонизации для нелинейных функционально-операторных уравнений, с. 84-99Пусть n,m, ℓ, s ∈ N – заданные числа, П ⊂ Rn – измеримое по Лебегу множество, X, Z – банаховы идеальные пространства измеримых на П функций. Рассматривается нелинейное операторное уравнение:
x = θ + AF[x], x ∈ Xℓ, (1)
где A : Zm → Xℓ – линейный ограниченный оператор, F : Xℓ → Zm – некоторый оператор. Уравнение (1) является естественной формой описания широкого класса сосредоточенных и распределенных систем. Ранее В.П. Политюковым был предложен метод монотонизации для обоснования разрешимости уравнения вида (1) и получения поточечных оценок решения. Суть его состояла в том, что разрешимость уравнения (1) доказывалась (помимо прочих условий) для случая, когда I) оператор F допускал поправку вида G = λI до монотонного оператора F[x] = F[θ+x]+G[x] такую, что II) (I +AG)−1A > 0 (λ > 0, I тождественный оператор). Как видно из примеров, приведенных в данной статье, условия I) и II) могут противоречить друг другу, что сужает сферу применения метода. Основной результат статьи в том, что в случае оператора A, обладающего свойством вольтерровости, естественным для эволюционных уравнений, требование монотонизируемости I) можно заменить требованием оценки оператора F на некотором конусном отрезке сверху и снизу через линейный оператор G плюс фиксированный элемент. Доказывается, что для глобальной разрешимости начально-краевой задачи, связанной с полулинейным эволюционным уравнением, достаточно, чтобы аналогичная начально-краевая задача, связанная с линейным уравнением, полученным путем оценки правой части исходного полулинейного уравнения на некотором конусном отрезке, имела положительное решение. В качестве иллюстрации рассматривается применение указанных результатов к системе Гурса–Дарбу, задаче Коши для волнового уравнения и первой краевой задаче для уравнения диффузии.
On Volterra type generalization of monotonization method for nonlinear functional operator equations, pp. 84-99Let n,m, ℓ, s ∈ N be given numbers, П ⊂ Rn be a set measurable by Lebesgue and X, Z be some Banach ideal spaces of functions measurable on . We consider a nonlinear operator equation of the form as follows:
x = θ + AF[x], x ∈ Xℓ, (1)
where A : Zm → Xℓ is bounded linear operator, F : F : Xℓ → Zm is some operator. Equation (1) is a natural form of lumped and distributed parameter systems from a wide enough class. Formerly, by V.P. Polityukov it was suggested monotonization method for justification of solvability of equation (1) and obtaining pointwise estimations for solutions. The matter of this method consisted in that solvability of equation (1) was proved (besides other conditions) under following: I) operator F allows some correction of the form G = λI to monotone operator F[x] = F[θ+x]+G[x] such that II) (I +AG)−1A > 0 (λ > 0, I is identity operator). As our examples show, conditions I) and II) may be contradictory to each other, that narrows a sphere of application of the method. The main result of the paper is that for the case of operator A, possessing the Volterra property, which is natural for evolutionary equations, the requirement I) of ability to be monotonized can be replaced by the requirement of some upper and lower estimates for operator F on some cone segment through linear operator G and additional fixed element. We prove that for global solvability of a boundary value problem associated with a semilinear evolutionary equation it is sufficient that analogous boundary value problem associated with linear equation, derived from the original equation by estimating of a right-hand side on some cone segment, have a positive solution. The application of results obtained is illustrated by Goursat–Darboux system, Cauchy problem associated with wave equation and first boundary value problem associated with diffusion equation.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.