Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Неизотермическое ползущее течение вязкоупругой жидкости со свободной поверхностью при формовании волокон, с. 101-108Работа посвящена моделированию ползущего движения вязкоупругой жидкости со свободной поверхностью, реализующейся при входе полимерной жидкости в формующий канал и выходе из него. Движение жидкости описывается уравнениями сохранения массы, импульса и энергии, дополненное определяющим реологическим уравнением состояния среды Гиезекуса. На основе метода конечных элементов разработан устойчивый численный алгоритм решения задачи. Проведены численные исследования по определению формы выходной струи для различных режимов течения и формы насадки. Исследована картина распределения скоростей жидкости, давления, напряжений и температуры при увеличении степени нагрева стенки формующего канала. Получены численные результаты зависимости эффекта разбухания полимерной жидкости от параметров реологической модели и температурных факторов.
Nonisothermal creeping flow of viscoelastic fluid with free surface during forming fibers, pp. 101-108Numerical simulation flow of viscoelastic fluid with free surface, which is realized in entrance and output flow in extrusion die was performed. The flow of liquid is described by equations of conservation of mass, momentum and thermal energy with rheological constitutive equation of Giesekesus. On basis of finite element method the stable numerical scheme was developed to solve this problem. Different numerical experiments was performed to define the configuration of outflow jet in various regimes and construction of die. The distribution of flow velocity fields, pressure and temperature are investigated on dependence of heating the walls. The ratio of extrusion in dependence of parameters the rheological model are investigated.
-
В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.
Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.
Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.
разбавленный раствор, быстрое затвердевание, фазовое поле, гранд-потенциал, математическое моделированиеWe consider a locally nonequilibrium process of solidification for a supercooled binary melt. For sake of simplicity, it is assumed, that the solidifying binary system is at constant temperature and pressure. Also there are two phases corresponding to the solid and the liquid states. The mathematical description of the solidification process is based on the phase-field model that generalizes the approach of Plapp (M. Plapp, Phys. Rev. E 84, 031601 (2011)) to the case of locally nonequilibrium processes. We use the method of extended irreversible thermodynamics to derive thermodynamically consistent equations of the model, in contrast to the phenomenological approach of Plapp. A concentration as a dynamic variable (and not the chemical potential of the impurity) is another difference from Plapp's model. The equivalence of describing the process of solidification through the concentration field and through the chemical potential of the system is shown in the framework of the resulting model. In view of the smallness of the relaxation times, the present model is reduced to the singular-perturbed system of partial differential parabolic equations describing the dynamics of concentration and phase fields. In the paper, it is assumed that the description of the thermodynamic equilibrium states on the basis of the experimentally obtained Gibbs potentials is given.
To verify the model, the numerical simulation of the one-dimensional problem of solidification of the melt was performed in the approximation of the diluted melt Si-As, which had been repeatedly investigated experimentally. In this paper, we propose a gradient-stable explicit method of integrating equations of the second order of accuracy in time in order to solve the system of singularly-perturbed equations numerically. We reduced an infinite space interval to a finite interval by the method of «periodic translation». The estimation of stability was performed using numerical experiments.
The concentration profile, the phase-field profile and the distribution coefficient of the impurity at the front of solidification depending upon the value of supercooling were obtained from the numerical simulation of the solidification process for diluted melt Si-As. An analytical expression for the distribution coefficient as a function of supercooling that follows from the locally nonequilibrium model with a sharp interface was used to test the adequacy of the results of numerical experiments. The effect of the model parameters on the solidification process and behavior of the numerical solutions near the diffuse boundary were investigated.
-
В статье рассматривается модельная задача несжимаемого течения жидкости и переноса тепла в коротком плоском канале с обратным уступом. Цель работы состоит в исследовании влияния граничного условия для потока тепла (температуры) на выходе из канала на характеристики теплопереноса внутри канала. Система уравнений Навье-Стокса и баланса тепла решаются численно с использованием равномерной сетки разрешением $6001\times301$ узлов. Для разностной аппроксимации пространственных производных используется метод контрольного объема второго порядка. Достоверность получаемых решений подтверждена для широкого диапазона числа Рейнольдса $(100 \leqslant \text{Re} \leqslant 1000)$ и числа Прандтля $\text{Pr} = 0.71$ путем сравнения с экспериментальными и теоретическими результатами, найденными в литературе. Анализируются картины течения, поля изотерм перегрева потока и поведение локального числа Нуссельта вдоль нагретой нижней стенки канала в зависимости от выбора выходного граничного условия для потока тепла (температуры). Показано, что этот выбор может оказать существенное влияние на характер прогрева течения внутри всего канала. По результатам исследования выбор сделан в пользу нелинейного граничного условия.
Numerical solution of the heat transfer problem in a short channel with backward-facing step, pp. 431-449A test problem of the laminar steady incompressible flow and heat transfer over backward-facing step in a 2D short channel is presented. The focus of the study is on the changes in heat transfer characteristics of the flow field inside the channel due to different boundary conditions for heat flux at the outflow border of the domain. The Navier-Stokes equations in a velocity-pressure formulation and energy equation are numerically solved using a uniform grid of $6001\times301$ points. The control-volume technique for the second-order difference approximation for spatial derivatives is used. The solutions were validated for a wide range of Reynolds numbers $(100 \leqslant \text{Re} \leqslant 1000)$ and Prandtl number $\text{Pr} = 0.71$, comparing them to experimental and numerical results found in the literature. The isotherm patterns and behaviors of Nusselt number along the heated bottom wall of the channel are examined. The study results showed that a condition for the heat flow (temperature) at the outlet border can influence the heat transfer in the whole domain. The nonlinear boundary condition for temperature at the outflow border is claimed as the best.
-
В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.
The paper deals with the results of solving the problem of steady-state flow of a viscous incompressible fluid in a plane channel with a backward-facing step and a heated bottom wall for the Reynolds number in the range $100\leqslant \text{Re}\leqslant1000$ and the expansion ratio of a plane channel in the range $1.11 \leqslant ER \leqslant 10$. The study was carried out by numerical integration of the 2-D Navier-Stokes equations in velocity-pressure formulation on uniform grids with a step which equals to 1/300. Correction of the results is confirmed by comparing them with the literature data. Detailed flow patterns and fields of stream overheating depending on two basic parameters of the problem $\text{Re}$ and $ER$ are demonstrated. It is shown that with the increase of parameters $\text{Re}$ and $ER$ the structure of flow becomes much more complicated, that is, there is an increase of the number of vortices and their sizes up to the formation of a vortex behind the backward-facing step with two centers of rotation. It is also stated that the typical height of the heating zone of the flow depends weakly on $\text{Re}$ and $ER$ and eventually, near the exit of the channel, equals approximately half of the channel height. For all centers of vortices their main characteristics are defined: location, extremums of stream function, vorticity. Complex nonmonotonic behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number) along the channel are analyzed. It is shown that these coefficients strongly depend both on Reynolds number and on expansion ratio, reaching the maximum values at the maximum values of $\text{Re}$ and $ER$.
-
Рассмотрена нелинейная задача о поле давления при одномерной плоской фильтрации, когда изменения плотности скелета, а также фильтрующейся жидкости и давления связаны пропорционально. Для решения задач использован асимптотический метод, основанный на введении в рассматриваемой задаче формального параметра и представлении искомого решения в виде асимптотической формулы по этому параметру. Показано, что постановки соответствующих задач для коэффициентов асимптотического разложения являются линейными, а для их решения могут быть использованы классические методы. Найдены аналитические выражения для коэффициентов асимптотического разложения решения. Показано, что соответствующие коэффициенты разложения остаточного члена текущего номера и все предшествующие ему по тому же формальному параметру, что и для искомого решения, обращаются в нуль. Использованный подход открывает новые возможности решения нелинейных задач фильтрации в неоднородной анизотропной пористой среде.
The nonlinear problem of the pressure field in the case of one-dimensional planar filtration is considered, when changes in the density of the skeleton, as well as the filtered fluid, and pressure are proportionally related. To solve the problems, an asymptotic method is used, based on the introduction of a formal parameter in the problem under consideration and the representation of the desired solution in the form of an asymptotic formula for this parameter. It is shown that the statements of the corresponding problems for the asymptotic expansion coefficients are linear, and classical methods can be used to solve them. Analytical expressions for the coefficients of asymptotic expansion of the solution have been found. It is shown that the corresponding expansion coefficients of the residual term of the current number and all the preceding ones in the same formal parameter as for the desired solution vanish. The approach used opens up new possibilities for solving nonlinear filtering problems in an inhomogeneous anisotropic porous medium.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.