Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается трехмерная бидиффузионная конвекция в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа, взаимодействующая с полем горизонтальной завихренности. Методом многомасштабных разложений получено семейство амплитудных уравнений, описывающее вариации амплитуды конвективных ячеек, форма которых задаётся как суперпозиция конечного числа конвективных валиков с различными волновыми векторами.
Для численного моделирования полученных систем амплитудных уравнений были разработаны несколько численных схем, основанных на современных ETD (exponential time differencing) псевдоспектральных методах. Написаны пакеты программ для моделирования валиковой конвекции, а также конвекции с ячейками квадратного и гексагонального типов. Численное моделирование показало, что конвекция имеет вид вытянутых "облаков" или "нитей". Было замечено, что в системе достаточно быстро развивается состояние диффузионного хаоса, когда первоначальное симметричное состояние разрушается, и конвекция становится нерегулярной как по пространству, так и по времени. При этом в некоторых областях возникают пиковые всплески завихренности.
Three-dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid interacting with horizontal vorticity field is considered in the neighborhood of Hopf bifurcation points. A family of amplitude equations for variations of convective cells amplitude is derived by multiple-scaled method. Shape of the cells is given as a superposition of a finite number of convective rolls with different wave vectors.
For numerical simulation of the obtained systems of amplitude equations a few numerical schemes based on modern ETD (exponential time differencing) pseudospectral methods have been developed. The software packages have been written for simulation of roll-type convection and convection with square and hexagonal type cells. Numerical simulation has showed that the convection takes the form of elongated “clouds” or “filaments”. It has been noted that in the system quite rapidly a state of diffusive chaos is developed, where the initial symmetric state is destroyed and the convection becomes irregular both in space and time. At the same time in some areas there are bursts of vorticity.
-
Псевдоспектральный метод для автономных нелинейных дифференциальных уравнений второго порядка, с. 61-72Автономные нелинейные дифференциальные уравнения представляют собой систему обыкновенных дифференциальных уравнений, которые часто применяются в различных областях механики, квантовой физики, химического машиностроения, физики и прикладной математики. Здесь рассматриваются автономные нелинейные дифференциальные уравнения второго порядка ${u}''({x}) - {u}'({x}) = {f}[{u}({x})]$ и ${u}''({x}) + {f}[{u}({x})]{u}'({x}) + {u}({x}) = 0$ на промежутке $[-1, 1]$ с заданными граничными значениями ${u}[-1]$ и ${u}[1]$. Для решения этих задач используется псевдоспектральный метод, основанный на матрице дифференцирования Чебышева с точками Чебышева-Гаусса-Лобатто. Для нахождения приближенных решений построены две новые итерационные процедуры. В этой статье был использован язык программирования Mathematica версии 10.4 для представления алгоритмов, численных результатов и рисунков. В качестве примера численного моделирования исследовано известное уравнение Ван дер Поля и получены хорошие результаты. Впоследствии возможно применение полученных результатов к другим нелинейным системам, таким как уравнения Рэлея, уравнения Льенара и уравнения Эмдена-Фаулера.
псевдоспектральный метод, матрица дифференцирования Чебышева, полином Чебышева, автономные уравнения, нелинейные дифференциальные уравнения, осциллятор Ван-дер-ПоляAutonomous nonlinear differential equations constituted a system of ordinary differential equations, which often applied in different areas of mechanics, quantum physics, chemical engineering science, physical science, and applied mathematics. It is assumed that the second-order autonomous nonlinear differential equations have the types ${u}''({x}) - {u}'({x}) = {f}[{u}({x})]$ and ${u}''({x}) + {f}[{u}({x})]{u}'({x}) + {u}({x}) = 0$ on the range $[-1, 1]$ with the boundary values ${u}[-1]$ and ${u}[1]$ provided. We use the pseudospectral method based on the Chebyshev differentiation matrix with Chebyshev-Gauss-Lobatto points to solve these problems. Moreover, we build two new iterative procedures to find the approximate solutions. In this paper, we use the programming language Mathematica version 10.4 to represent the algorithms, numerical results and figures. In the numerical results, we apply the well-known Van der Pol oscillator equation and gave good results. Therefore, they will be able to be applied to other nonlinear systems such as the Rayleigh equations, the Lienard equations, and the Emden-Fowler equations.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.